Phips commited on
Commit
a442af3
·
verified ·
1 Parent(s): 30f0238

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -3
README.md CHANGED
@@ -1,3 +1,37 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ pipeline_tag: image-to-image
4
+ tags:
5
+ - pytorch
6
+ - super-resolution
7
+ ---
8
+
9
+ [Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xHFA2k_ludvae_realplksr_dysample)
10
+
11
+ # 4xFFHQLDAT
12
+
13
+ Since the 4xFFHQDAT model is not able to handle the noise present in low quality input images, i made a small variant/finetune of this, the 4xFFHQLDAT model. This model might come in handy if your input image is of bad quality/not suited for above model. I basically made this model in a response to an input image posted in upscaling-results channel as a request to this upscale model (since 4xFFHQDAT would not be able to handle noise), see Imgsli1 example below for result.
14
+
15
+ Name: 4xFFHQLDAT
16
+ Author: Philip Hofmann
17
+ Release Date: 25.08.2023
18
+ License: CC BY 4.0
19
+ Network: DAT
20
+ Scale: 4
21
+ Purpose: 4x upscaling model for low quality input photos of faces
22
+ Iterations: 44000
23
+ batch_size: 4
24
+ HR_size: 128
25
+ Dataset: FFHQ - full dataset till 50k, then first 10k img multiscaled (resulted in ~260k imgs, 126GB)
26
+ Number of train images: 259990
27
+ OTF Training: Yes
28
+ Pretrained_Model_G: 4xFFHQDAT
29
+
30
+ Examples 4xFFHQLDAT:
31
+ [Imgsli1](https://imgsli.com/MjAwNjYx)
32
+ [Imgsli2](https://imgsli.com/MjAwNjYy)
33
+ [Imgsli3](https://imgsli.com/MjAwNjYz)
34
+
35
+
36
+ ![Example6](https://github.com/Phhofm/models/assets/14755670/61b3cff7-117b-4510-bdcf-cd49a1494227)
37
+ ![Example7](https://github.com/Phhofm/models/assets/14755670/de8e63a4-3b7b-4583-b638-720bb6423b2d)