Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
pipeline_tag: image-to-image
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- super-resolution
|
7 |
+
---
|
8 |
+
|
9 |
+
[Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xHFA2kLUDVAESwinIR_light%264xHFA2kLUDVAESRFormer_light)
|
10 |
+
|
11 |
+
# 4xHFA2kLUDVAESwinIR_light
|
12 |
+
|
13 |
+
Name: 4xHFA2kLUDVAESwinIR_light
|
14 |
+
Author: Philip Hofmann
|
15 |
+
Release Date: 10.06.2023
|
16 |
+
License: CC BY 4.0
|
17 |
+
Network: SwinIR
|
18 |
+
Arch Option: SwinIR-light
|
19 |
+
Scale: 4
|
20 |
+
Purpose: An lightweight anime 4x upscaling model with realistic degradations, based on musl's HFA2k_LUDVAE dataset
|
21 |
+
Iterations: 350,000
|
22 |
+
batch_size: 3
|
23 |
+
HR_size: 256
|
24 |
+
Epoch: 99 (require iter number per epoch: 3424)
|
25 |
+
Dataset: HFA2kLUDVAE
|
26 |
+
Number of train images: 10270
|
27 |
+
OTF Training: No
|
28 |
+
Pretrained_Model_G: None
|
29 |
+
|
30 |
+
Description: 4x lightweight anime upscaler with realistic degradations (compression, noise, blur). Visual outputs can be found on https://github.com/Phhofm/models/tree/main/4xHFA2kLUDVAE_results, together with timestamps and metrics to compare inference speed on the val set with other trained models/networks on this dataset.
|
31 |
+
|
32 |
+
![image](https://github.com/Phhofm/models/assets/14755670/64941695-7904-4ddf-9fad-d5f2ff04439a)
|
33 |
+
![image](https://github.com/Phhofm/models/assets/14755670/095cf1c6-3506-4c3d-a2f3-fa619650915d)
|
34 |
+
![image](https://github.com/Phhofm/models/assets/14755670/2dfa9f62-4ec2-4fab-9417-1b18bb4c1315)
|