--- license: cc-by-4.0 pipeline_tag: image-to-image tags: - pytorch - super-resolution --- [Link to Github Release](https://github.com/Phhofm/models/releases/tag/4xHFA2kLUDVAESwinIR_light%264xHFA2kLUDVAESRFormer_light) # 4xHFA2kLUDVAESwinIR_light Name: 4xHFA2kLUDVAESwinIR_light Author: Philip Hofmann Release Date: 10.06.2023 License: CC BY 4.0 Network: SwinIR Arch Option: SwinIR-light Scale: 4 Purpose: An lightweight anime 4x upscaling model with realistic degradations, based on musl's HFA2k_LUDVAE dataset Iterations: 350,000 batch_size: 3 HR_size: 256 Epoch: 99 (require iter number per epoch: 3424) Dataset: HFA2kLUDVAE Number of train images: 10270 OTF Training: No Pretrained_Model_G: None Description: 4x lightweight anime upscaler with realistic degradations (compression, noise, blur). Visual outputs can be found on https://github.com/Phhofm/models/tree/main/4xHFA2kLUDVAE_results, together with timestamps and metrics to compare inference speed on the val set with other trained models/networks on this dataset. ![image](https://github.com/Phhofm/models/assets/14755670/64941695-7904-4ddf-9fad-d5f2ff04439a) ![image](https://github.com/Phhofm/models/assets/14755670/095cf1c6-3506-4c3d-a2f3-fa619650915d) ![image](https://github.com/Phhofm/models/assets/14755670/2dfa9f62-4ec2-4fab-9417-1b18bb4c1315)