File size: 4,037 Bytes
1acfff0
 
 
 
 
 
 
 
e057edf
 
 
1acfff0
 
 
71460fc
e057edf
1acfff0
 
02f8f91
e057edf
2cfcc60
2e7690f
ef7921d
e057edf
 
 
2cfcc60
e057edf
461063e
ab33335
a8ea539
2e7690f
 
923e08f
e057edf
7f56e51
 
 
 
e057edf
 
 
 
6d1d05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e057edf
 
 
 
923e08f
 
e057edf
 
1acfff0
 
 
 
 
 
02f8f91
 
7f56e51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: Pinkstack/PARM-V1.5-QwQ-Qwen-2.5-o1-3B-VLLM
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- gguf
- Reasoning
- o1
- qwq
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-generation
---

![PARM-2.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/9wMB_c4WmaJR91f-ybFJl.png)

We are proud to announce, our new high quality flagship model series - ***PARM2***, Very high quality reasoning, math and coding abilities for a small size, that **anyone** can run on their device for free.


 🧀 Which quant is right for you? 

- ***Q4:*** This model should be used on edge devices like high end phones or laptops due to its very compact size, quality is okay but fully usable. 
- ***Q8:*** This model should be used on most high end modern devices like rtx 3080, Responses are very high quality, but its slightly slower than Q4. 

This Parm v2 is based on Qwen 2.5 3B which has gotten many extra reasoning training parameters so it would have similar outputs to qwen QwQ / O.1 mini (only much, smaller.). We've trained it using the datasets [here](https://huggingface.co/collections/Pinkstackorg/pram-v2-67612d3c542b9121bf15891c)
if you benchmarked this model let me know

⚠️ it may think it's name is Claude due to the training data, we are sorry for this issue but is shouldn't effect the quality of the responses. 

This is a pretty lite model which can be run on high end phones pretty quickly using the q4 quant.

# Passes "strawberry" test! (Q8 w/ msty & rtx 3080 10gb) ✅
![strawberry-test.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/GQn5NqHn9GxdRyJtcIRAn.png)



To use this model, you must use a service which supports the GGUF file format.
Additionaly, this is the Prompt Template: it uses the qwen2 template.
```
<thinking>

{{- if .Suffix }}<|fim_prefix|>{{ .Prompt }}<|fim_suffix|>{{ .Suffix }}<|fim_middle|>
{{- else if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{- else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{- end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}

```

Or if you are using an anti prompt: <|end|><|assistant|> 

Highly recommended to use with a system prompt. eg;
You are a helpful assistant named Parm2 by Pinkstack. think step-by-step for complex stuff, use COT if neeed.


# Uploaded  model

- **Developed by:** Pinkstack
- **License:** apache-2.0
- **Finetuned from model :** Pinkstack/PARM-V1.5-QwQ-Qwen-2.5-o1-3B-VLLM

![Pinkstack.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/2xMulpuSlZ3C1vpGgsAYi.png)

This AI model was trained with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.