File size: 7,498 Bytes
b57d810
 
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
b57d810
686c8d3
832218e
686c8d3
b57d810
 
686c8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d810
 
 
6727ae7
 
 
 
 
 
 
 
 
 
686c8d3
 
 
 
6727ae7
686c8d3
 
6727ae7
 
 
 
 
 
 
 
 
 
 
 
686c8d3
b57d810
6727ae7
 
686c8d3
 
6727ae7
 
686c8d3
 
 
 
 
 
 
 
 
 
6727ae7
 
 
 
b57d810
686c8d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d810
686c8d3
b57d810
6727ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d810
f524ccb
b57d810
f524ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
b57d810
f524ccb
596b7a4
 
6727ae7
a66bbc3
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
language:

- es

license: apache-2.0

tags:

- "national library of spain"

- "spanish"

- "bne"

- "qa"

- "question answering"

datasets:

- "PlanTL-GOB-ES/SQAC"  

metrics:
- "f1"
- "exact match"

model-index:
- name: roberta-base-bne-sqac
  results:
  - task: 
      type: question-answering
    dataset:
      type: "PlanTL-GOB-ES/SQAC" 
      name: SQAC
    metrics:
      - name: F1
        type: f1
        value: 0.7923
---

# Spanish RoBERTa-base trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset.

## Table of contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training](#training)
  - [Training data](#training-data)
  - [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Evaluation](#evaluation)
   - [Variable and metrics](#variable-and-metrics)
   - [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
  - [Author](#author)
  - [Contact information](#contact-information)
  - [Copyright](#copyright)
  - [Licensing information](#licensing-information)
  - [Funding](#funding)
  - [Citing information](#citing-information)
  - [Disclaimer](#disclaimer)
  
</details>

## Model description
The **roberta-base-bne-sqac** is a Question Answering (QA) model for the Spanish language fine-tuned from the [roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.

## Intended uses and limitations

**roberta-base-bne-sqac** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.

## How to use

```python
from transformers import pipeline
nlp = pipeline("question-answering", model="PlanTL-GOB-ES/roberta-base-bne-sqac")
text = "¿Dónde vivo?"
context = "Me llamo Wolfgang y vivo en Berlin"
  
qa_results = nlp(text, context)
print(qa_results)
```

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.

## Training

### Training data
We used the QA dataset in Spanish called [SQAC corpus](https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC) for training and evaluation.

### Training procedure
The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.

## Evaluation results
We evaluated the **roberta-base-bne-sqac** on the SQAC test set against standard multilingual and monolingual baselines:


| Model        | SQAC (F1) | 
| ------------|:----|
| roberta-large-bne-sqac | **82.02** |
| roberta-base-bne-sqac | 79.23|
| BETO       | 79.23 |
| mBERT       | 75.62 |
| BERTIN | 76.78 |
| ELECTRA | 73.83 |

For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).

## Additional information

### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)

### Contact information
For further information, send an email to <plantl-gob-es@bsc.es>

### Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)

### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.

### Citing information

If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405):
```
@article{,
   abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a
Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial
Intelligence (SEDIA) within the framework of the Plan-TL.},
   author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
   doi = {10.26342/2022-68-3},
   issn = {1135-5948},
   journal = {Procesamiento del Lenguaje Natural},
   keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informàtica),Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural},
   publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
   title = {MarIA: Spanish Language Models},
   volume = {68},
   url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
   year = {2022},
}

```

### Disclaimer

The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third  parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.

In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.


Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.

Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.

En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos.