File size: 3,191 Bytes
af37612
 
 
 
 
 
b871af6
 
af37612
 
 
 
 
 
 
 
 
7ffca30
 
05934a6
 
 
 
 
 
 
 
476b649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05934a6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
language:
- fr
tags:
- historical
- french
- public domain
- teams
datasets:
- PleIAs/French-PD-Newspapers
---

# Journaux-LM

![Journaux-LM](journaux-lm-v1.png)

The Journaux-LM is a language model pretrained on historical French newspapers. Technically the model itself is an ELECTRA model, which was pretrained with the [TEAMS](https://aclanthology.org/2021.findings-acl.219/) approach.

## Datasets

Version 1 of the Journaux-LM was pretrained on the following publicly available datasets:

* [`PleIAs/French-PD-Newspapers`](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers)

In total, the pretraining corpus has a size of 408GB.

## Benchmarks (Named Entity Recognition)

We compare our Zeitungs-LM directly to the French Europeana BERT model (as Zeitungs-LM is supposed to be the successor of it) on various downstream tasks from the [hmBench](https://github.com/stefan-it/hmBench) repository, which is focussed on Named Entity Recognition.

We report averaged micro F1-Score over 5 runs with different seeds and use the best hyper-parameter configuration on the development set of each dataset to report the final test score.

### Development Set

The results on the development set can be seen in the following table:

| Model \ Dataset     | [AjMC][1] | [ICDAR][2] | [LeTemps][3] | [NewsEye][4] | [HIPE-2020][5] | Avg.      |
|:--------------------|:----------|:-----------|:-------------|:-------------|:---------------|:----------|
| [Europeana BERT][6] | 85.7      | 77.63      | 67.14        | 82.68        | 85.98          | 79.83     |
| Journaux-LM v1      | 86.25     | 78.51      | 67.76        | 84.07        | 88.17          | 80.95     |

Our Journaux-LM leads to a performance boost of 1.12% compared to the German Europeana BERT model.

### Test Set

The final results on the test set can be seen here:

| Model \ Dataset     | [AjMC][1] | [ICDAR][2] | [LeTemps][3] | [NewsEye][4] | [HIPE-2020][5] | Avg.      |
|:--------------------|:----------|:-----------|:-------------|:-------------|:---------------|:----------|
| [Europeana BERT][6] | 81.06     | 78.17      | 67.22        | 73.51        | 81.00          | 76.19     |
| Journaux-LM v1      | 83.41     | 77.73      | 67.11        | 74.48        | 83.14          | 77.17     |

Our Journaux-LM beats the French Europeana BERT model by 0.98%.

[1]: https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md
[2]: https://github.com/stefan-it/historic-domain-adaptation-icdar
[3]: https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-letemps.md
[4]: https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md
[5]: https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md
[6]: https://huggingface.co/dbmdz/bert-base-french-europeana-cased

# Changelog

* 02.11.2024: Initial version of the model. More details are coming very soon!

# Acknowledgements

Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️

Made from Bavarian Oberland with ❤️ and 🥨.