PolyChirag's picture
End of training
634de2c verified
|
raw
history blame
2.43 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: Marathi_ASR_using_xlsr_wav2vec
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: mr
          split: test
          args: mr
        metrics:
          - name: Wer
            type: wer
            value: 0.7180765086206896

Marathi_ASR_using_xlsr_wav2vec

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7582
  • Wer: 0.7181

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 2.6667 200 0.7381 0.7263
0.336 5.3333 400 0.7472 0.7289
0.336 8.0 600 0.7452 0.7215
0.3237 10.6667 800 0.7449 0.7212
0.3237 13.3333 1000 0.7546 0.7192
0.3104 16.0 1200 0.7565 0.7210
0.3104 18.6667 1400 0.7550 0.7193
0.3089 21.3333 1600 0.7551 0.7186
0.3089 24.0 1800 0.7572 0.7185
0.2993 26.6667 2000 0.7571 0.7175
0.2993 29.3333 2200 0.7582 0.7181

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.2
  • Datasets 2.19.0
  • Tokenizers 0.19.1