|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Marathi_ASR_using_xlsr_wav2vec |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_13_0 |
|
type: common_voice_13_0 |
|
config: mr |
|
split: test |
|
args: mr |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.7180765086206896 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Marathi_ASR_using_xlsr_wav2vec |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7582 |
|
- Wer: 0.7181 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| No log | 2.6667 | 200 | 0.7381 | 0.7263 | |
|
| 0.336 | 5.3333 | 400 | 0.7472 | 0.7289 | |
|
| 0.336 | 8.0 | 600 | 0.7452 | 0.7215 | |
|
| 0.3237 | 10.6667 | 800 | 0.7449 | 0.7212 | |
|
| 0.3237 | 13.3333 | 1000 | 0.7546 | 0.7192 | |
|
| 0.3104 | 16.0 | 1200 | 0.7565 | 0.7210 | |
|
| 0.3104 | 18.6667 | 1400 | 0.7550 | 0.7193 | |
|
| 0.3089 | 21.3333 | 1600 | 0.7551 | 0.7186 | |
|
| 0.3089 | 24.0 | 1800 | 0.7572 | 0.7185 | |
|
| 0.2993 | 26.6667 | 2000 | 0.7571 | 0.7175 | |
|
| 0.2993 | 29.3333 | 2200 | 0.7582 | 0.7181 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|