Porridge9243
commited on
Commit
•
abefaa1
1
Parent(s):
44812a6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1721.92 +/- 403.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dedb88c47deceb640cdc392ba4aba2917a4c9642e7c2984573dd132ee54809f
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faa835254c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa83525550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa835255e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa83525670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faa83525700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faa83525790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa83525820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa835258b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faa83525940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa835259d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa83525a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa83525af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7faa8351af30>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674998966024043301,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzVcD5+3ay9+hMBP7+Pkj/69HW/cZvqv0XDYz+ePza/R7qBP8lf3L0Nylg+yjkYwGQ1Cb9pyI0/SawNv5CIPT+Ndvg+7L25P9qZZT9kXsc8G1Jxv+YMnr/WmZe+T7vfP1vOi7/gJ8s+JZH0v2EVdr8mFGo9kYyXvk4I3D7T2H4/VH1Evqv1vL/jJ1Q/rnlQPgCTPz+8e4A9dcBKPpBPDsDhNCu/DnW+P8tFab8I7ac+DGBbP8CI4j+Sz2U/95mGPIQnEr9CMO8+AuiGvp7SKkBbzou/4CfLPiWR9L9hFXa/pnm3vzcFOr8gOio+iI4UP9g1Kr/ucTvAKx0qPfBIaj8/W24/oCn0Phx3Pb/Xr2Y/8XwyviI8z7/SRrE+2iDavYI6Vz7j8xHAajP+PnSqoD8QvrW+/ZiPPuYyS7/B6Zq/vWFqP+Anyz4lkfS/YRV2v1Kg0L/f2CS+qlr2PuNkij9udJM+1tIvv+RTb77NRcI/SX8QPyJkwT/M/ou/Xj3nPrRpCT+hlHI/AU25PXOiWz+XT58/qCYGv07jOj+iMLC/JjB2v6G67jzbKkW/13LJvr1haj/gJ8s+JZH0v3UohT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA+CW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG4USPgAAAAApb+m/AAAAAC0FRD0AAAAA9yXmPwAAAABvPWA9AAAAAHPD2T8AAAAA24qLPQAAAADtWwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjD8sNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnJBL4AAAAAhoDdvwAAAADQLvW9AAAAAD2m4D8AAAAAExmaPQAAAACt6eI/AAAAAHLLhz0AAAAAVljrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0bjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/Bl07AAAAAClD+r8AAAAAcOyHvQAAAACmvvc/AAAAAFSnOT0AAAAAhFEBQAAAAABqMaE8AAAAALhY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDzE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArJ0SvQAAAABUrdy/AAAAAC35EL4AAAAAhpfvPwAAAAAP76g9AAAAAO+H7D8AAAAA2UwMvgAAAAAuHOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ10j0UXYUaMAWyUTegDjAF0lEdAqjluOOsDGXV9lChoBkdAntxVrl/6PGgHTegDaAhHQKo8VMj/uLJ1fZQoaAZHQJwZpWT5ftxoB03oA2gIR0CqPHw5NoJzdX2UKGgGR0CgH1UIC2c8aAdN6ANoCEdAqkL//FR51XV9lChoBkdAm64IfGMn7mgHTegDaAhHQKpFkhgVoHt1fZQoaAZHQJyVv0TURWdoB03oA2gIR0CqSH+nqFAWdX2UKGgGR0Cf0l67ulXSaAdN6ANoCEdAqkioTZg5R3V9lChoBkdAnIr0Nrj5sWgHTegDaAhHQKpPMGh24d91fZQoaAZHQJucC/etSydoB03oA2gIR0CqUbUm+j/NdX2UKGgGR0CaVONAC4jKaAdN6ANoCEdAqlSqEL6UJXV9lChoBkdAk0EAdXDFZWgHTegDaAhHQKpU07FKkEd1fZQoaAZHQJYnx5/smfJoB03oA2gIR0CqW1Ac94eLdX2UKGgGR0CWUh3wkPc0aAdN6ANoCEdAql3hCWu5jHV9lChoBkdAl4WSWNWEK2gHTegDaAhHQKpg3rqt5lh1fZQoaAZHQJ8cqV+qioNoB03oA2gIR0CqYQXh4t6HdX2UKGgGR0Cb+wTnJT2naAdN6ANoCEdAqmeaGahHsnV9lChoBkdAmbBQ3Lmp2mgHTegDaAhHQKpqK0tRNyp1fZQoaAZHQJtBp77bcoJoB03oA2gIR0CqbQ8+qzZ6dX2UKGgGR0CepOwsoUi7aAdN6ANoCEdAqm04HC4z8HV9lChoBkdAlc8nGff4y2gHTegDaAhHQKpz3GuLaVV1fZQoaAZHQJgcXVtoBaNoB03oA2gIR0CqdnFkYoAodX2UKGgGR0CaSWXF98Z2aAdN6ANoCEdAqnlr4L1EmnV9lChoBkdAmxC5IczZYmgHTegDaAhHQKp5lo9LYf51fZQoaAZHQJgd5vHcUM5oB03oA2gIR0CqgFGwJPZadX2UKGgGR0CSUJhmoR7JaAdN6ANoCEdAqoLu5e7cwnV9lChoBkdAlhXcijcmB2gHTegDaAhHQKqF3NZ/0/Z1fZQoaAZHQJPZO1kUbkxoB03oA2gIR0CqhgX+VC5VdX2UKGgGR0CSF+gFotcwaAdN6ANoCEdAqoyPizcAR3V9lChoBkdAmfCkHMUypWgHTegDaAhHQKqPF8v24/h1fZQoaAZHQI/mZMFlkH5oB03oA2gIR0CqkgSM98qndX2UKGgGR0CXtevf0mMPaAdN6ANoCEdAqpIss8PnS3V9lChoBkdAnROekLx7RmgHTegDaAhHQKqYtMGorFx1fZQoaAZHQJUZL+3pfQdoB03oA2gIR0Cqm0ZpSJj2dX2UKGgGR0CVmWke6qbSaAdN6ANoCEdAqp5DR+jM3nV9lChoBkdAn/5gPd2xIWgHTegDaAhHQKqeb/oaDPJ1fZQoaAZHQJmcPNfPX05oB03oA2gIR0CqpTGD15B1dX2UKGgGR0CcgSh7E5yVaAdN6ANoCEdAqqfOr4nF53V9lChoBkdAnPhNuk1uSGgHTegDaAhHQKqq1WLgn+h1fZQoaAZHQJqKQHJLdvdoB03oA2gIR0Cqqv5qVQhwdX2UKGgGR0CfOxqxTsIFaAdN6ANoCEdAqrHVl5GBnXV9lChoBkdAkYs4/iYLLWgHTegDaAhHQKq0eA3DNyJ1fZQoaAZHQJAhpQYUFjdoB03oA2gIR0Cqt2m9g4OudX2UKGgGR0CSHNunuRcNaAdN6ANoCEdAqreTfcer/HV9lChoBkdAlblTB/I8yWgHTegDaAhHQKq+T0NjLB91fZQoaAZHQJDYQx+KCQNoB03oA2gIR0CqwNuvllshdX2UKGgGR0CQeI62fChwaAdN6ANoCEdAqsPMiY9gW3V9lChoBkdAkoCe6d1+zGgHTegDaAhHQKrD87wrlNl1fZQoaAZHQJeqwYyfthNoB03oA2gIR0CqyoiA+Y+jdX2UKGgGR0Cb0iBf8dgfaAdN6ANoCEdAqs0aV2Rq5HV9lChoBkdAlDu9noPkJmgHTegDaAhHQKrQFj1f3N91fZQoaAZHQIEUU4ecQRRoB03oA2gIR0Cq0D3l8w6AdX2UKGgGR0CTFr+fRNRFaAdN6ANoCEdAqtbL6+FlCnV9lChoBkdAlEla0pmVaGgHTegDaAhHQKrZXrYXfqJ1fZQoaAZHQJZHvysjmjloB03oA2gIR0Cq3Gi+10DEdX2UKGgGR0CEHQ8xsVL0aAdN6ANoCEdAqtyUz9CNTHV9lChoBkdAltYoG2TgVGgHTegDaAhHQKrjRJnQID51fZQoaAZHQJZic7eVLSNoB03oA2gIR0Cq5dllkH2RdX2UKGgGR0CULpFvQ4S6aAdN6ANoCEdAqujQlF+d9XV9lChoBkdAmDPYD5j6N2gHTegDaAhHQKro+eKbayt1fZQoaAZHQJELVRBNVR1oB03oA2gIR0Cq75ThYNiIdX2UKGgGR0CBViyHmA9WaAdN6ANoCEdAqvIcX+ERJ3V9lChoBkdAkJiEWl/H52gHTegDaAhHQKr1Ij9n9Nx1fZQoaAZHQI6I21Bt1p1oB03oA2gIR0Cq9U4cebNKdX2UKGgGR0CYvMpYs/Y8aAdN6ANoCEdAqvvebZvkzXV9lChoBkdAlZ3RDG96C2gHTegDaAhHQKr+bLRrrPd1fZQoaAZHQI5sO7tiQT5oB03oA2gIR0CrAWNTcZccdX2UKGgGR0CSV3Kp1ie/aAdN6ANoCEdAqwGMneBQN3V9lChoBkdAkyaRkVeruWgHTegDaAhHQKsIEoESuhd1fZQoaAZHQJDsgeXAuZloB03oA2gIR0CrCrZJkGzKdX2UKGgGR0CQpnmHxjJ/aAdN6ANoCEdAqw26Oq//N3V9lChoBkdAkXy7ZnL7oGgHTegDaAhHQKsN5jlxOtZ1fZQoaAZHQJFVfCuU2UBoB03oA2gIR0CrFJoLw4KhdX2UKGgGR0COKIHLzPKMaAdN6ANoCEdAqxc1D4QBgnV9lChoBkdAlQyemelKsmgHTegDaAhHQKsaNL0SRKZ1fZQoaAZHQJPonFzdUKloB03oA2gIR0CrGlyG8EmqdX2UKGgGR0CWn4oUi6g/aAdN6ANoCEdAqyEFq1w5vXV9lChoBkdAmdH5z90ihWgHTegDaAhHQKsjoexOclR1fZQoaAZHQIXTeE/SpitoB03oA2gIR0CrJqGm+CbudX2UKGgGR0CXZ3+RoysTaAdN6ANoCEdAqybJakhzNnV9lChoBkdAlqN+JYT0x2gHTegDaAhHQKstUgU1yeZ1fZQoaAZHQJfmjG4qgAZoB03oA2gIR0CrL+VBlcyFdX2UKGgGR0CY+E2/i5uqaAdN6ANoCEdAqzLcLKFIu3V9lChoBkdAm+arW3BpH2gHTegDaAhHQKszBTw2ETR1fZQoaAZHQJRD/sAvL5hoB03oA2gIR0CrOX8z67/XdX2UKGgGR0CW66wtapxWaAdN6ANoCEdAqzwL1yvLYHV9lChoBkdAmjXu+mFajmgHTegDaAhHQKs/BDVpbll1fZQoaAZHQJxDHJ4jbBZoB03oA2gIR0CrPzBSDRMOdX2UKGgGR0CTLsVwxWT5aAdN6ANoCEdAq0W8lgMMJHV9lChoBkdAlMpHsPatcWgHTegDaAhHQKtIV3wCr951fZQoaAZHQJVsOq3mV7hoB03oA2gIR0CrS0yHuZ1FdX2UKGgGR0CYwgOC5EtvaAdN6ANoCEdAq0t0Tg2qDXV9lChoBkdAnXyia7VawGgHTegDaAhHQKtSIPCl7+l1fZQoaAZHQJnXMKKHfuVoB03oA2gIR0CrVLHYxtYTdX2UKGgGR0CcQrDlHSWraAdN6ANoCEdAq1exXuE253V9lChoBkdAiVjLa/RE4WgHTegDaAhHQKtX3dKujh11fZQoaAZHQJ2gYdmxt55oB03oA2gIR0CrXnLPt2LYdX2UKGgGR0CeCvDO1OTJaAdN6ANoCEdAq2D2nIhhY3V9lChoBkdAndZ3bRF7U2gHTegDaAhHQKtj5jiGWUt1fZQoaAZHQJuPciGFi8ZoB03oA2gIR0CrZA5f2K2sdX2UKGgGR0CewrX2dupCaAdN6ANoCEdAq2qO1fE4vXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:148fc82a83ab74aeebadbe651c819d59cf169271775d153ef265ec0116737b3c
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7a92a99b4a9bf1f3f9e581b7cd76d65ef08df3cdb1ab3d4760bbae534aa083a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa835254c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa83525550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa835255e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa83525670>", "_build": "<function ActorCriticPolicy._build at 0x7faa83525700>", "forward": "<function ActorCriticPolicy.forward at 0x7faa83525790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa83525820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa835258b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa83525940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa835259d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa83525a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa83525af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faa8351af30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674998966024043301, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzVcD5+3ay9+hMBP7+Pkj/69HW/cZvqv0XDYz+ePza/R7qBP8lf3L0Nylg+yjkYwGQ1Cb9pyI0/SawNv5CIPT+Ndvg+7L25P9qZZT9kXsc8G1Jxv+YMnr/WmZe+T7vfP1vOi7/gJ8s+JZH0v2EVdr8mFGo9kYyXvk4I3D7T2H4/VH1Evqv1vL/jJ1Q/rnlQPgCTPz+8e4A9dcBKPpBPDsDhNCu/DnW+P8tFab8I7ac+DGBbP8CI4j+Sz2U/95mGPIQnEr9CMO8+AuiGvp7SKkBbzou/4CfLPiWR9L9hFXa/pnm3vzcFOr8gOio+iI4UP9g1Kr/ucTvAKx0qPfBIaj8/W24/oCn0Phx3Pb/Xr2Y/8XwyviI8z7/SRrE+2iDavYI6Vz7j8xHAajP+PnSqoD8QvrW+/ZiPPuYyS7/B6Zq/vWFqP+Anyz4lkfS/YRV2v1Kg0L/f2CS+qlr2PuNkij9udJM+1tIvv+RTb77NRcI/SX8QPyJkwT/M/ou/Xj3nPrRpCT+hlHI/AU25PXOiWz+XT58/qCYGv07jOj+iMLC/JjB2v6G67jzbKkW/13LJvr1haj/gJ8s+JZH0v3UohT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA+CW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG4USPgAAAAApb+m/AAAAAC0FRD0AAAAA9yXmPwAAAABvPWA9AAAAAHPD2T8AAAAA24qLPQAAAADtWwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjD8sNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnJBL4AAAAAhoDdvwAAAADQLvW9AAAAAD2m4D8AAAAAExmaPQAAAACt6eI/AAAAAHLLhz0AAAAAVljrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0bjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/Bl07AAAAAClD+r8AAAAAcOyHvQAAAACmvvc/AAAAAFSnOT0AAAAAhFEBQAAAAABqMaE8AAAAALhY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDzE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArJ0SvQAAAABUrdy/AAAAAC35EL4AAAAAhpfvPwAAAAAP76g9AAAAAO+H7D8AAAAA2UwMvgAAAAAuHOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ10j0UXYUaMAWyUTegDjAF0lEdAqjluOOsDGXV9lChoBkdAntxVrl/6PGgHTegDaAhHQKo8VMj/uLJ1fZQoaAZHQJwZpWT5ftxoB03oA2gIR0CqPHw5NoJzdX2UKGgGR0CgH1UIC2c8aAdN6ANoCEdAqkL//FR51XV9lChoBkdAm64IfGMn7mgHTegDaAhHQKpFkhgVoHt1fZQoaAZHQJyVv0TURWdoB03oA2gIR0CqSH+nqFAWdX2UKGgGR0Cf0l67ulXSaAdN6ANoCEdAqkioTZg5R3V9lChoBkdAnIr0Nrj5sWgHTegDaAhHQKpPMGh24d91fZQoaAZHQJucC/etSydoB03oA2gIR0CqUbUm+j/NdX2UKGgGR0CaVONAC4jKaAdN6ANoCEdAqlSqEL6UJXV9lChoBkdAk0EAdXDFZWgHTegDaAhHQKpU07FKkEd1fZQoaAZHQJYnx5/smfJoB03oA2gIR0CqW1Ac94eLdX2UKGgGR0CWUh3wkPc0aAdN6ANoCEdAql3hCWu5jHV9lChoBkdAl4WSWNWEK2gHTegDaAhHQKpg3rqt5lh1fZQoaAZHQJ8cqV+qioNoB03oA2gIR0CqYQXh4t6HdX2UKGgGR0Cb+wTnJT2naAdN6ANoCEdAqmeaGahHsnV9lChoBkdAmbBQ3Lmp2mgHTegDaAhHQKpqK0tRNyp1fZQoaAZHQJtBp77bcoJoB03oA2gIR0CqbQ8+qzZ6dX2UKGgGR0CepOwsoUi7aAdN6ANoCEdAqm04HC4z8HV9lChoBkdAlc8nGff4y2gHTegDaAhHQKpz3GuLaVV1fZQoaAZHQJgcXVtoBaNoB03oA2gIR0CqdnFkYoAodX2UKGgGR0CaSWXF98Z2aAdN6ANoCEdAqnlr4L1EmnV9lChoBkdAmxC5IczZYmgHTegDaAhHQKp5lo9LYf51fZQoaAZHQJgd5vHcUM5oB03oA2gIR0CqgFGwJPZadX2UKGgGR0CSUJhmoR7JaAdN6ANoCEdAqoLu5e7cwnV9lChoBkdAlhXcijcmB2gHTegDaAhHQKqF3NZ/0/Z1fZQoaAZHQJPZO1kUbkxoB03oA2gIR0CqhgX+VC5VdX2UKGgGR0CSF+gFotcwaAdN6ANoCEdAqoyPizcAR3V9lChoBkdAmfCkHMUypWgHTegDaAhHQKqPF8v24/h1fZQoaAZHQI/mZMFlkH5oB03oA2gIR0CqkgSM98qndX2UKGgGR0CXtevf0mMPaAdN6ANoCEdAqpIss8PnS3V9lChoBkdAnROekLx7RmgHTegDaAhHQKqYtMGorFx1fZQoaAZHQJUZL+3pfQdoB03oA2gIR0Cqm0ZpSJj2dX2UKGgGR0CVmWke6qbSaAdN6ANoCEdAqp5DR+jM3nV9lChoBkdAn/5gPd2xIWgHTegDaAhHQKqeb/oaDPJ1fZQoaAZHQJmcPNfPX05oB03oA2gIR0CqpTGD15B1dX2UKGgGR0CcgSh7E5yVaAdN6ANoCEdAqqfOr4nF53V9lChoBkdAnPhNuk1uSGgHTegDaAhHQKqq1WLgn+h1fZQoaAZHQJqKQHJLdvdoB03oA2gIR0Cqqv5qVQhwdX2UKGgGR0CfOxqxTsIFaAdN6ANoCEdAqrHVl5GBnXV9lChoBkdAkYs4/iYLLWgHTegDaAhHQKq0eA3DNyJ1fZQoaAZHQJAhpQYUFjdoB03oA2gIR0Cqt2m9g4OudX2UKGgGR0CSHNunuRcNaAdN6ANoCEdAqreTfcer/HV9lChoBkdAlblTB/I8yWgHTegDaAhHQKq+T0NjLB91fZQoaAZHQJDYQx+KCQNoB03oA2gIR0CqwNuvllshdX2UKGgGR0CQeI62fChwaAdN6ANoCEdAqsPMiY9gW3V9lChoBkdAkoCe6d1+zGgHTegDaAhHQKrD87wrlNl1fZQoaAZHQJeqwYyfthNoB03oA2gIR0CqyoiA+Y+jdX2UKGgGR0Cb0iBf8dgfaAdN6ANoCEdAqs0aV2Rq5HV9lChoBkdAlDu9noPkJmgHTegDaAhHQKrQFj1f3N91fZQoaAZHQIEUU4ecQRRoB03oA2gIR0Cq0D3l8w6AdX2UKGgGR0CTFr+fRNRFaAdN6ANoCEdAqtbL6+FlCnV9lChoBkdAlEla0pmVaGgHTegDaAhHQKrZXrYXfqJ1fZQoaAZHQJZHvysjmjloB03oA2gIR0Cq3Gi+10DEdX2UKGgGR0CEHQ8xsVL0aAdN6ANoCEdAqtyUz9CNTHV9lChoBkdAltYoG2TgVGgHTegDaAhHQKrjRJnQID51fZQoaAZHQJZic7eVLSNoB03oA2gIR0Cq5dllkH2RdX2UKGgGR0CULpFvQ4S6aAdN6ANoCEdAqujQlF+d9XV9lChoBkdAmDPYD5j6N2gHTegDaAhHQKro+eKbayt1fZQoaAZHQJELVRBNVR1oB03oA2gIR0Cq75ThYNiIdX2UKGgGR0CBViyHmA9WaAdN6ANoCEdAqvIcX+ERJ3V9lChoBkdAkJiEWl/H52gHTegDaAhHQKr1Ij9n9Nx1fZQoaAZHQI6I21Bt1p1oB03oA2gIR0Cq9U4cebNKdX2UKGgGR0CYvMpYs/Y8aAdN6ANoCEdAqvvebZvkzXV9lChoBkdAlZ3RDG96C2gHTegDaAhHQKr+bLRrrPd1fZQoaAZHQI5sO7tiQT5oB03oA2gIR0CrAWNTcZccdX2UKGgGR0CSV3Kp1ie/aAdN6ANoCEdAqwGMneBQN3V9lChoBkdAkyaRkVeruWgHTegDaAhHQKsIEoESuhd1fZQoaAZHQJDsgeXAuZloB03oA2gIR0CrCrZJkGzKdX2UKGgGR0CQpnmHxjJ/aAdN6ANoCEdAqw26Oq//N3V9lChoBkdAkXy7ZnL7oGgHTegDaAhHQKsN5jlxOtZ1fZQoaAZHQJFVfCuU2UBoB03oA2gIR0CrFJoLw4KhdX2UKGgGR0COKIHLzPKMaAdN6ANoCEdAqxc1D4QBgnV9lChoBkdAlQyemelKsmgHTegDaAhHQKsaNL0SRKZ1fZQoaAZHQJPonFzdUKloB03oA2gIR0CrGlyG8EmqdX2UKGgGR0CWn4oUi6g/aAdN6ANoCEdAqyEFq1w5vXV9lChoBkdAmdH5z90ihWgHTegDaAhHQKsjoexOclR1fZQoaAZHQIXTeE/SpitoB03oA2gIR0CrJqGm+CbudX2UKGgGR0CXZ3+RoysTaAdN6ANoCEdAqybJakhzNnV9lChoBkdAlqN+JYT0x2gHTegDaAhHQKstUgU1yeZ1fZQoaAZHQJfmjG4qgAZoB03oA2gIR0CrL+VBlcyFdX2UKGgGR0CY+E2/i5uqaAdN6ANoCEdAqzLcLKFIu3V9lChoBkdAm+arW3BpH2gHTegDaAhHQKszBTw2ETR1fZQoaAZHQJRD/sAvL5hoB03oA2gIR0CrOX8z67/XdX2UKGgGR0CW66wtapxWaAdN6ANoCEdAqzwL1yvLYHV9lChoBkdAmjXu+mFajmgHTegDaAhHQKs/BDVpbll1fZQoaAZHQJxDHJ4jbBZoB03oA2gIR0CrPzBSDRMOdX2UKGgGR0CTLsVwxWT5aAdN6ANoCEdAq0W8lgMMJHV9lChoBkdAlMpHsPatcWgHTegDaAhHQKtIV3wCr951fZQoaAZHQJVsOq3mV7hoB03oA2gIR0CrS0yHuZ1FdX2UKGgGR0CYwgOC5EtvaAdN6ANoCEdAq0t0Tg2qDXV9lChoBkdAnXyia7VawGgHTegDaAhHQKtSIPCl7+l1fZQoaAZHQJnXMKKHfuVoB03oA2gIR0CrVLHYxtYTdX2UKGgGR0CcQrDlHSWraAdN6ANoCEdAq1exXuE253V9lChoBkdAiVjLa/RE4WgHTegDaAhHQKtX3dKujh11fZQoaAZHQJ2gYdmxt55oB03oA2gIR0CrXnLPt2LYdX2UKGgGR0CeCvDO1OTJaAdN6ANoCEdAq2D2nIhhY3V9lChoBkdAndZ3bRF7U2gHTegDaAhHQKtj5jiGWUt1fZQoaAZHQJuPciGFi8ZoB03oA2gIR0CrZA5f2K2sdX2UKGgGR0CewrX2dupCaAdN6ANoCEdAq2qO1fE4vXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3158f48a182d1c80adee590bf527025b26d782b9b6f103e99c1d56dd8976132
|
3 |
+
size 1067751
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1721.9206178434192, "std_reward": 403.5428075067895, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T14:25:53.195069"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f264e4520f2c757aaf9ddeaa4b3450bb0d68a7afac1a9c06db196802af49a9d
|
3 |
+
size 2136
|