Porridge9243 commited on
Commit
abefaa1
1 Parent(s): 44812a6

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1721.92 +/- 403.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dedb88c47deceb640cdc392ba4aba2917a4c9642e7c2984573dd132ee54809f
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa835254c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa83525550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa835255e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa83525670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faa83525700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faa83525790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa83525820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa835258b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faa83525940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa835259d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa83525a60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa83525af0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7faa8351af30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674998966024043301,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzVcD5+3ay9+hMBP7+Pkj/69HW/cZvqv0XDYz+ePza/R7qBP8lf3L0Nylg+yjkYwGQ1Cb9pyI0/SawNv5CIPT+Ndvg+7L25P9qZZT9kXsc8G1Jxv+YMnr/WmZe+T7vfP1vOi7/gJ8s+JZH0v2EVdr8mFGo9kYyXvk4I3D7T2H4/VH1Evqv1vL/jJ1Q/rnlQPgCTPz+8e4A9dcBKPpBPDsDhNCu/DnW+P8tFab8I7ac+DGBbP8CI4j+Sz2U/95mGPIQnEr9CMO8+AuiGvp7SKkBbzou/4CfLPiWR9L9hFXa/pnm3vzcFOr8gOio+iI4UP9g1Kr/ucTvAKx0qPfBIaj8/W24/oCn0Phx3Pb/Xr2Y/8XwyviI8z7/SRrE+2iDavYI6Vz7j8xHAajP+PnSqoD8QvrW+/ZiPPuYyS7/B6Zq/vWFqP+Anyz4lkfS/YRV2v1Kg0L/f2CS+qlr2PuNkij9udJM+1tIvv+RTb77NRcI/SX8QPyJkwT/M/ou/Xj3nPrRpCT+hlHI/AU25PXOiWz+XT58/qCYGv07jOj+iMLC/JjB2v6G67jzbKkW/13LJvr1haj/gJ8s+JZH0v3UohT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA+CW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG4USPgAAAAApb+m/AAAAAC0FRD0AAAAA9yXmPwAAAABvPWA9AAAAAHPD2T8AAAAA24qLPQAAAADtWwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjD8sNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnJBL4AAAAAhoDdvwAAAADQLvW9AAAAAD2m4D8AAAAAExmaPQAAAACt6eI/AAAAAHLLhz0AAAAAVljrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0bjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/Bl07AAAAAClD+r8AAAAAcOyHvQAAAACmvvc/AAAAAFSnOT0AAAAAhFEBQAAAAABqMaE8AAAAALhY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDzE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArJ0SvQAAAABUrdy/AAAAAC35EL4AAAAAhpfvPwAAAAAP76g9AAAAAO+H7D8AAAAA2UwMvgAAAAAuHOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ10j0UXYUaMAWyUTegDjAF0lEdAqjluOOsDGXV9lChoBkdAntxVrl/6PGgHTegDaAhHQKo8VMj/uLJ1fZQoaAZHQJwZpWT5ftxoB03oA2gIR0CqPHw5NoJzdX2UKGgGR0CgH1UIC2c8aAdN6ANoCEdAqkL//FR51XV9lChoBkdAm64IfGMn7mgHTegDaAhHQKpFkhgVoHt1fZQoaAZHQJyVv0TURWdoB03oA2gIR0CqSH+nqFAWdX2UKGgGR0Cf0l67ulXSaAdN6ANoCEdAqkioTZg5R3V9lChoBkdAnIr0Nrj5sWgHTegDaAhHQKpPMGh24d91fZQoaAZHQJucC/etSydoB03oA2gIR0CqUbUm+j/NdX2UKGgGR0CaVONAC4jKaAdN6ANoCEdAqlSqEL6UJXV9lChoBkdAk0EAdXDFZWgHTegDaAhHQKpU07FKkEd1fZQoaAZHQJYnx5/smfJoB03oA2gIR0CqW1Ac94eLdX2UKGgGR0CWUh3wkPc0aAdN6ANoCEdAql3hCWu5jHV9lChoBkdAl4WSWNWEK2gHTegDaAhHQKpg3rqt5lh1fZQoaAZHQJ8cqV+qioNoB03oA2gIR0CqYQXh4t6HdX2UKGgGR0Cb+wTnJT2naAdN6ANoCEdAqmeaGahHsnV9lChoBkdAmbBQ3Lmp2mgHTegDaAhHQKpqK0tRNyp1fZQoaAZHQJtBp77bcoJoB03oA2gIR0CqbQ8+qzZ6dX2UKGgGR0CepOwsoUi7aAdN6ANoCEdAqm04HC4z8HV9lChoBkdAlc8nGff4y2gHTegDaAhHQKpz3GuLaVV1fZQoaAZHQJgcXVtoBaNoB03oA2gIR0CqdnFkYoAodX2UKGgGR0CaSWXF98Z2aAdN6ANoCEdAqnlr4L1EmnV9lChoBkdAmxC5IczZYmgHTegDaAhHQKp5lo9LYf51fZQoaAZHQJgd5vHcUM5oB03oA2gIR0CqgFGwJPZadX2UKGgGR0CSUJhmoR7JaAdN6ANoCEdAqoLu5e7cwnV9lChoBkdAlhXcijcmB2gHTegDaAhHQKqF3NZ/0/Z1fZQoaAZHQJPZO1kUbkxoB03oA2gIR0CqhgX+VC5VdX2UKGgGR0CSF+gFotcwaAdN6ANoCEdAqoyPizcAR3V9lChoBkdAmfCkHMUypWgHTegDaAhHQKqPF8v24/h1fZQoaAZHQI/mZMFlkH5oB03oA2gIR0CqkgSM98qndX2UKGgGR0CXtevf0mMPaAdN6ANoCEdAqpIss8PnS3V9lChoBkdAnROekLx7RmgHTegDaAhHQKqYtMGorFx1fZQoaAZHQJUZL+3pfQdoB03oA2gIR0Cqm0ZpSJj2dX2UKGgGR0CVmWke6qbSaAdN6ANoCEdAqp5DR+jM3nV9lChoBkdAn/5gPd2xIWgHTegDaAhHQKqeb/oaDPJ1fZQoaAZHQJmcPNfPX05oB03oA2gIR0CqpTGD15B1dX2UKGgGR0CcgSh7E5yVaAdN6ANoCEdAqqfOr4nF53V9lChoBkdAnPhNuk1uSGgHTegDaAhHQKqq1WLgn+h1fZQoaAZHQJqKQHJLdvdoB03oA2gIR0Cqqv5qVQhwdX2UKGgGR0CfOxqxTsIFaAdN6ANoCEdAqrHVl5GBnXV9lChoBkdAkYs4/iYLLWgHTegDaAhHQKq0eA3DNyJ1fZQoaAZHQJAhpQYUFjdoB03oA2gIR0Cqt2m9g4OudX2UKGgGR0CSHNunuRcNaAdN6ANoCEdAqreTfcer/HV9lChoBkdAlblTB/I8yWgHTegDaAhHQKq+T0NjLB91fZQoaAZHQJDYQx+KCQNoB03oA2gIR0CqwNuvllshdX2UKGgGR0CQeI62fChwaAdN6ANoCEdAqsPMiY9gW3V9lChoBkdAkoCe6d1+zGgHTegDaAhHQKrD87wrlNl1fZQoaAZHQJeqwYyfthNoB03oA2gIR0CqyoiA+Y+jdX2UKGgGR0Cb0iBf8dgfaAdN6ANoCEdAqs0aV2Rq5HV9lChoBkdAlDu9noPkJmgHTegDaAhHQKrQFj1f3N91fZQoaAZHQIEUU4ecQRRoB03oA2gIR0Cq0D3l8w6AdX2UKGgGR0CTFr+fRNRFaAdN6ANoCEdAqtbL6+FlCnV9lChoBkdAlEla0pmVaGgHTegDaAhHQKrZXrYXfqJ1fZQoaAZHQJZHvysjmjloB03oA2gIR0Cq3Gi+10DEdX2UKGgGR0CEHQ8xsVL0aAdN6ANoCEdAqtyUz9CNTHV9lChoBkdAltYoG2TgVGgHTegDaAhHQKrjRJnQID51fZQoaAZHQJZic7eVLSNoB03oA2gIR0Cq5dllkH2RdX2UKGgGR0CULpFvQ4S6aAdN6ANoCEdAqujQlF+d9XV9lChoBkdAmDPYD5j6N2gHTegDaAhHQKro+eKbayt1fZQoaAZHQJELVRBNVR1oB03oA2gIR0Cq75ThYNiIdX2UKGgGR0CBViyHmA9WaAdN6ANoCEdAqvIcX+ERJ3V9lChoBkdAkJiEWl/H52gHTegDaAhHQKr1Ij9n9Nx1fZQoaAZHQI6I21Bt1p1oB03oA2gIR0Cq9U4cebNKdX2UKGgGR0CYvMpYs/Y8aAdN6ANoCEdAqvvebZvkzXV9lChoBkdAlZ3RDG96C2gHTegDaAhHQKr+bLRrrPd1fZQoaAZHQI5sO7tiQT5oB03oA2gIR0CrAWNTcZccdX2UKGgGR0CSV3Kp1ie/aAdN6ANoCEdAqwGMneBQN3V9lChoBkdAkyaRkVeruWgHTegDaAhHQKsIEoESuhd1fZQoaAZHQJDsgeXAuZloB03oA2gIR0CrCrZJkGzKdX2UKGgGR0CQpnmHxjJ/aAdN6ANoCEdAqw26Oq//N3V9lChoBkdAkXy7ZnL7oGgHTegDaAhHQKsN5jlxOtZ1fZQoaAZHQJFVfCuU2UBoB03oA2gIR0CrFJoLw4KhdX2UKGgGR0COKIHLzPKMaAdN6ANoCEdAqxc1D4QBgnV9lChoBkdAlQyemelKsmgHTegDaAhHQKsaNL0SRKZ1fZQoaAZHQJPonFzdUKloB03oA2gIR0CrGlyG8EmqdX2UKGgGR0CWn4oUi6g/aAdN6ANoCEdAqyEFq1w5vXV9lChoBkdAmdH5z90ihWgHTegDaAhHQKsjoexOclR1fZQoaAZHQIXTeE/SpitoB03oA2gIR0CrJqGm+CbudX2UKGgGR0CXZ3+RoysTaAdN6ANoCEdAqybJakhzNnV9lChoBkdAlqN+JYT0x2gHTegDaAhHQKstUgU1yeZ1fZQoaAZHQJfmjG4qgAZoB03oA2gIR0CrL+VBlcyFdX2UKGgGR0CY+E2/i5uqaAdN6ANoCEdAqzLcLKFIu3V9lChoBkdAm+arW3BpH2gHTegDaAhHQKszBTw2ETR1fZQoaAZHQJRD/sAvL5hoB03oA2gIR0CrOX8z67/XdX2UKGgGR0CW66wtapxWaAdN6ANoCEdAqzwL1yvLYHV9lChoBkdAmjXu+mFajmgHTegDaAhHQKs/BDVpbll1fZQoaAZHQJxDHJ4jbBZoB03oA2gIR0CrPzBSDRMOdX2UKGgGR0CTLsVwxWT5aAdN6ANoCEdAq0W8lgMMJHV9lChoBkdAlMpHsPatcWgHTegDaAhHQKtIV3wCr951fZQoaAZHQJVsOq3mV7hoB03oA2gIR0CrS0yHuZ1FdX2UKGgGR0CYwgOC5EtvaAdN6ANoCEdAq0t0Tg2qDXV9lChoBkdAnXyia7VawGgHTegDaAhHQKtSIPCl7+l1fZQoaAZHQJnXMKKHfuVoB03oA2gIR0CrVLHYxtYTdX2UKGgGR0CcQrDlHSWraAdN6ANoCEdAq1exXuE253V9lChoBkdAiVjLa/RE4WgHTegDaAhHQKtX3dKujh11fZQoaAZHQJ2gYdmxt55oB03oA2gIR0CrXnLPt2LYdX2UKGgGR0CeCvDO1OTJaAdN6ANoCEdAq2D2nIhhY3V9lChoBkdAndZ3bRF7U2gHTegDaAhHQKtj5jiGWUt1fZQoaAZHQJuPciGFi8ZoB03oA2gIR0CrZA5f2K2sdX2UKGgGR0CewrX2dupCaAdN6ANoCEdAq2qO1fE4vXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:148fc82a83ab74aeebadbe651c819d59cf169271775d153ef265ec0116737b3c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7a92a99b4a9bf1f3f9e581b7cd76d65ef08df3cdb1ab3d4760bbae534aa083a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa835254c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa83525550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa835255e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa83525670>", "_build": "<function ActorCriticPolicy._build at 0x7faa83525700>", "forward": "<function ActorCriticPolicy.forward at 0x7faa83525790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa83525820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa835258b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa83525940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa835259d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa83525a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa83525af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faa8351af30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674998966024043301, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMzVcD5+3ay9+hMBP7+Pkj/69HW/cZvqv0XDYz+ePza/R7qBP8lf3L0Nylg+yjkYwGQ1Cb9pyI0/SawNv5CIPT+Ndvg+7L25P9qZZT9kXsc8G1Jxv+YMnr/WmZe+T7vfP1vOi7/gJ8s+JZH0v2EVdr8mFGo9kYyXvk4I3D7T2H4/VH1Evqv1vL/jJ1Q/rnlQPgCTPz+8e4A9dcBKPpBPDsDhNCu/DnW+P8tFab8I7ac+DGBbP8CI4j+Sz2U/95mGPIQnEr9CMO8+AuiGvp7SKkBbzou/4CfLPiWR9L9hFXa/pnm3vzcFOr8gOio+iI4UP9g1Kr/ucTvAKx0qPfBIaj8/W24/oCn0Phx3Pb/Xr2Y/8XwyviI8z7/SRrE+2iDavYI6Vz7j8xHAajP+PnSqoD8QvrW+/ZiPPuYyS7/B6Zq/vWFqP+Anyz4lkfS/YRV2v1Kg0L/f2CS+qlr2PuNkij9udJM+1tIvv+RTb77NRcI/SX8QPyJkwT/M/ou/Xj3nPrRpCT+hlHI/AU25PXOiWz+XT58/qCYGv07jOj+iMLC/JjB2v6G67jzbKkW/13LJvr1haj/gJ8s+JZH0v3UohT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA+CW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG4USPgAAAAApb+m/AAAAAC0FRD0AAAAA9yXmPwAAAABvPWA9AAAAAHPD2T8AAAAA24qLPQAAAADtWwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjD8sNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnJBL4AAAAAhoDdvwAAAADQLvW9AAAAAD2m4D8AAAAAExmaPQAAAACt6eI/AAAAAHLLhz0AAAAAVljrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0bjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/Bl07AAAAAClD+r8AAAAAcOyHvQAAAACmvvc/AAAAAFSnOT0AAAAAhFEBQAAAAABqMaE8AAAAALhY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDzE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArJ0SvQAAAABUrdy/AAAAAC35EL4AAAAAhpfvPwAAAAAP76g9AAAAAO+H7D8AAAAA2UwMvgAAAAAuHOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ10j0UXYUaMAWyUTegDjAF0lEdAqjluOOsDGXV9lChoBkdAntxVrl/6PGgHTegDaAhHQKo8VMj/uLJ1fZQoaAZHQJwZpWT5ftxoB03oA2gIR0CqPHw5NoJzdX2UKGgGR0CgH1UIC2c8aAdN6ANoCEdAqkL//FR51XV9lChoBkdAm64IfGMn7mgHTegDaAhHQKpFkhgVoHt1fZQoaAZHQJyVv0TURWdoB03oA2gIR0CqSH+nqFAWdX2UKGgGR0Cf0l67ulXSaAdN6ANoCEdAqkioTZg5R3V9lChoBkdAnIr0Nrj5sWgHTegDaAhHQKpPMGh24d91fZQoaAZHQJucC/etSydoB03oA2gIR0CqUbUm+j/NdX2UKGgGR0CaVONAC4jKaAdN6ANoCEdAqlSqEL6UJXV9lChoBkdAk0EAdXDFZWgHTegDaAhHQKpU07FKkEd1fZQoaAZHQJYnx5/smfJoB03oA2gIR0CqW1Ac94eLdX2UKGgGR0CWUh3wkPc0aAdN6ANoCEdAql3hCWu5jHV9lChoBkdAl4WSWNWEK2gHTegDaAhHQKpg3rqt5lh1fZQoaAZHQJ8cqV+qioNoB03oA2gIR0CqYQXh4t6HdX2UKGgGR0Cb+wTnJT2naAdN6ANoCEdAqmeaGahHsnV9lChoBkdAmbBQ3Lmp2mgHTegDaAhHQKpqK0tRNyp1fZQoaAZHQJtBp77bcoJoB03oA2gIR0CqbQ8+qzZ6dX2UKGgGR0CepOwsoUi7aAdN6ANoCEdAqm04HC4z8HV9lChoBkdAlc8nGff4y2gHTegDaAhHQKpz3GuLaVV1fZQoaAZHQJgcXVtoBaNoB03oA2gIR0CqdnFkYoAodX2UKGgGR0CaSWXF98Z2aAdN6ANoCEdAqnlr4L1EmnV9lChoBkdAmxC5IczZYmgHTegDaAhHQKp5lo9LYf51fZQoaAZHQJgd5vHcUM5oB03oA2gIR0CqgFGwJPZadX2UKGgGR0CSUJhmoR7JaAdN6ANoCEdAqoLu5e7cwnV9lChoBkdAlhXcijcmB2gHTegDaAhHQKqF3NZ/0/Z1fZQoaAZHQJPZO1kUbkxoB03oA2gIR0CqhgX+VC5VdX2UKGgGR0CSF+gFotcwaAdN6ANoCEdAqoyPizcAR3V9lChoBkdAmfCkHMUypWgHTegDaAhHQKqPF8v24/h1fZQoaAZHQI/mZMFlkH5oB03oA2gIR0CqkgSM98qndX2UKGgGR0CXtevf0mMPaAdN6ANoCEdAqpIss8PnS3V9lChoBkdAnROekLx7RmgHTegDaAhHQKqYtMGorFx1fZQoaAZHQJUZL+3pfQdoB03oA2gIR0Cqm0ZpSJj2dX2UKGgGR0CVmWke6qbSaAdN6ANoCEdAqp5DR+jM3nV9lChoBkdAn/5gPd2xIWgHTegDaAhHQKqeb/oaDPJ1fZQoaAZHQJmcPNfPX05oB03oA2gIR0CqpTGD15B1dX2UKGgGR0CcgSh7E5yVaAdN6ANoCEdAqqfOr4nF53V9lChoBkdAnPhNuk1uSGgHTegDaAhHQKqq1WLgn+h1fZQoaAZHQJqKQHJLdvdoB03oA2gIR0Cqqv5qVQhwdX2UKGgGR0CfOxqxTsIFaAdN6ANoCEdAqrHVl5GBnXV9lChoBkdAkYs4/iYLLWgHTegDaAhHQKq0eA3DNyJ1fZQoaAZHQJAhpQYUFjdoB03oA2gIR0Cqt2m9g4OudX2UKGgGR0CSHNunuRcNaAdN6ANoCEdAqreTfcer/HV9lChoBkdAlblTB/I8yWgHTegDaAhHQKq+T0NjLB91fZQoaAZHQJDYQx+KCQNoB03oA2gIR0CqwNuvllshdX2UKGgGR0CQeI62fChwaAdN6ANoCEdAqsPMiY9gW3V9lChoBkdAkoCe6d1+zGgHTegDaAhHQKrD87wrlNl1fZQoaAZHQJeqwYyfthNoB03oA2gIR0CqyoiA+Y+jdX2UKGgGR0Cb0iBf8dgfaAdN6ANoCEdAqs0aV2Rq5HV9lChoBkdAlDu9noPkJmgHTegDaAhHQKrQFj1f3N91fZQoaAZHQIEUU4ecQRRoB03oA2gIR0Cq0D3l8w6AdX2UKGgGR0CTFr+fRNRFaAdN6ANoCEdAqtbL6+FlCnV9lChoBkdAlEla0pmVaGgHTegDaAhHQKrZXrYXfqJ1fZQoaAZHQJZHvysjmjloB03oA2gIR0Cq3Gi+10DEdX2UKGgGR0CEHQ8xsVL0aAdN6ANoCEdAqtyUz9CNTHV9lChoBkdAltYoG2TgVGgHTegDaAhHQKrjRJnQID51fZQoaAZHQJZic7eVLSNoB03oA2gIR0Cq5dllkH2RdX2UKGgGR0CULpFvQ4S6aAdN6ANoCEdAqujQlF+d9XV9lChoBkdAmDPYD5j6N2gHTegDaAhHQKro+eKbayt1fZQoaAZHQJELVRBNVR1oB03oA2gIR0Cq75ThYNiIdX2UKGgGR0CBViyHmA9WaAdN6ANoCEdAqvIcX+ERJ3V9lChoBkdAkJiEWl/H52gHTegDaAhHQKr1Ij9n9Nx1fZQoaAZHQI6I21Bt1p1oB03oA2gIR0Cq9U4cebNKdX2UKGgGR0CYvMpYs/Y8aAdN6ANoCEdAqvvebZvkzXV9lChoBkdAlZ3RDG96C2gHTegDaAhHQKr+bLRrrPd1fZQoaAZHQI5sO7tiQT5oB03oA2gIR0CrAWNTcZccdX2UKGgGR0CSV3Kp1ie/aAdN6ANoCEdAqwGMneBQN3V9lChoBkdAkyaRkVeruWgHTegDaAhHQKsIEoESuhd1fZQoaAZHQJDsgeXAuZloB03oA2gIR0CrCrZJkGzKdX2UKGgGR0CQpnmHxjJ/aAdN6ANoCEdAqw26Oq//N3V9lChoBkdAkXy7ZnL7oGgHTegDaAhHQKsN5jlxOtZ1fZQoaAZHQJFVfCuU2UBoB03oA2gIR0CrFJoLw4KhdX2UKGgGR0COKIHLzPKMaAdN6ANoCEdAqxc1D4QBgnV9lChoBkdAlQyemelKsmgHTegDaAhHQKsaNL0SRKZ1fZQoaAZHQJPonFzdUKloB03oA2gIR0CrGlyG8EmqdX2UKGgGR0CWn4oUi6g/aAdN6ANoCEdAqyEFq1w5vXV9lChoBkdAmdH5z90ihWgHTegDaAhHQKsjoexOclR1fZQoaAZHQIXTeE/SpitoB03oA2gIR0CrJqGm+CbudX2UKGgGR0CXZ3+RoysTaAdN6ANoCEdAqybJakhzNnV9lChoBkdAlqN+JYT0x2gHTegDaAhHQKstUgU1yeZ1fZQoaAZHQJfmjG4qgAZoB03oA2gIR0CrL+VBlcyFdX2UKGgGR0CY+E2/i5uqaAdN6ANoCEdAqzLcLKFIu3V9lChoBkdAm+arW3BpH2gHTegDaAhHQKszBTw2ETR1fZQoaAZHQJRD/sAvL5hoB03oA2gIR0CrOX8z67/XdX2UKGgGR0CW66wtapxWaAdN6ANoCEdAqzwL1yvLYHV9lChoBkdAmjXu+mFajmgHTegDaAhHQKs/BDVpbll1fZQoaAZHQJxDHJ4jbBZoB03oA2gIR0CrPzBSDRMOdX2UKGgGR0CTLsVwxWT5aAdN6ANoCEdAq0W8lgMMJHV9lChoBkdAlMpHsPatcWgHTegDaAhHQKtIV3wCr951fZQoaAZHQJVsOq3mV7hoB03oA2gIR0CrS0yHuZ1FdX2UKGgGR0CYwgOC5EtvaAdN6ANoCEdAq0t0Tg2qDXV9lChoBkdAnXyia7VawGgHTegDaAhHQKtSIPCl7+l1fZQoaAZHQJnXMKKHfuVoB03oA2gIR0CrVLHYxtYTdX2UKGgGR0CcQrDlHSWraAdN6ANoCEdAq1exXuE253V9lChoBkdAiVjLa/RE4WgHTegDaAhHQKtX3dKujh11fZQoaAZHQJ2gYdmxt55oB03oA2gIR0CrXnLPt2LYdX2UKGgGR0CeCvDO1OTJaAdN6ANoCEdAq2D2nIhhY3V9lChoBkdAndZ3bRF7U2gHTegDaAhHQKtj5jiGWUt1fZQoaAZHQJuPciGFi8ZoB03oA2gIR0CrZA5f2K2sdX2UKGgGR0CewrX2dupCaAdN6ANoCEdAq2qO1fE4vXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3158f48a182d1c80adee590bf527025b26d782b9b6f103e99c1d56dd8976132
3
+ size 1067751
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1721.9206178434192, "std_reward": 403.5428075067895, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T14:25:53.195069"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f264e4520f2c757aaf9ddeaa4b3450bb0d68a7afac1a9c06db196802af49a9d
3
+ size 2136