File size: 1,518 Bytes
6d166f4 2d50c08 6d166f4 a1a0e1c 45eab63 6d166f4 a1a0e1c 6d166f4 cb058c2 e2f4108 a1a0e1c 6d166f4 a1a0e1c 6d166f4 a1a0e1c 6d166f4 a1a0e1c 6d166f4 a1a0e1c 6d166f4 a1a0e1c 2d50c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
base_model:
- Ppoyaa/Lumina-5-Instruct
library_name: transformers
license: apache-2.0
---
# Lumina-5.5-Instruct
Lumina-5.5-Instruct is a Mixture of Experts (MoE) made with [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing). This model uses a context window of up to 32k.
This 5.5 version has 32B parameters, as opposed to the 19B parameters of version 5.
## 🏆 Open LLM Leaderboard Evaluation Results
Coming soon.
## Quants
By [mradermacher](https://huggingface.co/mradermacher):
* Static GGUF: [mradermacher/Lumina-5.5-Instruct-GGUF](https://huggingface.co/mradermacher/Lumina-5.5-Instruct-GGUF)
* Imatrix GGUF: [mradermacher/Lumina-5.5-Instruct-i1-GGUF](https://huggingface.co/mradermacher/Lumina-5.5-Instruct-i1-GGUF)
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/Lumina-5.5-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |