Prashantmdgl9
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,172 +1 @@
|
|
1 |
-
|
2 |
-
license: other
|
3 |
-
license_name: gemma-terms-of-use
|
4 |
-
license_link: https://ai.google.dev/gemma/terms
|
5 |
-
base_model: google/gemma-2b
|
6 |
-
datasets:
|
7 |
-
- ravithejads/samvaad-hi-filtered
|
8 |
-
- Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
|
9 |
-
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
|
10 |
-
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
|
11 |
-
- Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
|
12 |
-
- Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
|
13 |
-
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
|
14 |
-
- Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
|
15 |
-
- Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
|
16 |
-
- abhinand/tamil-alpaca
|
17 |
-
- Tensoic/airoboros-3.2_kn
|
18 |
-
- Tensoic/gpt-teacher_kn
|
19 |
-
- VishnuPJ/Alpaca_Instruct_Malayalam
|
20 |
-
- Tensoic/Alpaca-Gujarati
|
21 |
-
- HydraIndicLM/punjabi_alpaca_52K
|
22 |
-
- HydraIndicLM/bengali_alpaca_dolly_67k
|
23 |
-
- OdiaGenAI/Odia_Alpaca_instructions_52k
|
24 |
-
- yahma/alpaca-cleaned
|
25 |
-
language:
|
26 |
-
- te
|
27 |
-
- en
|
28 |
-
- ta
|
29 |
-
- ml
|
30 |
-
- mr
|
31 |
-
- hi
|
32 |
-
- kn
|
33 |
-
- sd
|
34 |
-
- ne
|
35 |
-
- ur
|
36 |
-
- as
|
37 |
-
- gu
|
38 |
-
- bn
|
39 |
-
- pa
|
40 |
-
- or
|
41 |
-
library_name: transformers
|
42 |
-
pipeline_tag: text-generation
|
43 |
-
---
|
44 |
-
|
45 |
-
# Indic-gemma-2b-finetuned-sft-Navarasa-2.0
|
46 |
-
|
47 |
-
This model is based on [google/gemma-2b](https://huggingface.co/google/gemma-2b) and hase been LoRA finetuned on 15 Indian languages and English language instruction datasets:
|
48 |
-
|
49 |
-
1. #### Hindi - [ravithejads/samvaad-hi-filtered](https://huggingface.co/datasets/ravithejads/samvaad-hi-filtered), [HydraIndicLM/hindi_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/hindi_alpaca_dolly_67k)(sampled)
|
50 |
-
2. #### Telugu - [Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized), [Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized)
|
51 |
-
3. #### Marathi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
|
52 |
-
4. #### Urdu - [Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered)
|
53 |
-
5. #### Assamese - [Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered)
|
54 |
-
6. #### Konkani - [Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered)
|
55 |
-
7. #### Nepali - [Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered)
|
56 |
-
8. #### Sindhi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
|
57 |
-
9. #### Tamil - [abhinand/tamil-alpaca](https://huggingface.co/datasets/abhinand/tamil-alpaca)
|
58 |
-
10. #### Kannada - [Tensoic/airoboros-3.2_kn](https://huggingface.co/datasets/Tensoic/airoboros-3.2_kn), [Tensoic/gpt-teacher_kn](https://huggingface.co/datasets/Tensoic/gpt-teacher_kn)
|
59 |
-
11. #### Malayalam - [VishnuPJ/Alpaca_Instruct_Malayalam](https://huggingface.co/datasets/VishnuPJ/Alpaca_Instruct_Malayalam)
|
60 |
-
12. #### Gujarati - [Tensoic/Alpaca-Gujarati](https://huggingface.co/datasets/Tensoic/Alpaca-Gujarati)
|
61 |
-
13. #### Punjabi - [HydraIndicLM/punjabi_alpaca_52K](https://huggingface.co/datasets/HydraIndicLM/punjabi_alpaca_52K)
|
62 |
-
14. #### Bengali - [HydraIndicLM/bengali_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/bengali_alpaca_dolly_67k)(alpaca filtered)
|
63 |
-
15. #### Odia - [OdiaGenAI/Odia_Alpaca_instructions_52k](https://huggingface.co/datasets/OdiaGenAI/Odia_Alpaca_instructions_52k), [OdiaGenAI/gpt-teacher-roleplay-odia-3k](https://huggingface.co/datasets/OdiaGenAI/gpt-teacher-roleplay-odia-3k)
|
64 |
-
16. #### English - [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
|
65 |
-
|
66 |
-
The model is finetuned using [unsloth](https://github.com/unslothai/unsloth) library and we provide inference code using the same for faster inference. Alternatively you can use HuggingFace Library for inference.
|
67 |
-
|
68 |
-
# Training Details:
|
69 |
-
|
70 |
-
The model is trained on approx 650K instruction samples.
|
71 |
-
1. GPU: 1 A100, 80GB
|
72 |
-
2. Time: 45 Hours
|
73 |
-
3. Platform: [E2E Networks](https://www.e2enetworks.com/)
|
74 |
-
# Installation
|
75 |
-
|
76 |
-
`!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121`
|
77 |
-
`!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"`
|
78 |
-
|
79 |
-
# Input Text Format
|
80 |
-
|
81 |
-
```
|
82 |
-
### Instruction: {instruction}
|
83 |
-
|
84 |
-
### Input: {input}
|
85 |
-
|
86 |
-
## Response: {response}
|
87 |
-
```
|
88 |
-
|
89 |
-
# Inference With Unsloth
|
90 |
-
|
91 |
-
```python3
|
92 |
-
from unsloth import FastLanguageModel
|
93 |
-
import torch
|
94 |
-
max_seq_length = 2048
|
95 |
-
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
96 |
-
load_in_4bit = False
|
97 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
98 |
-
model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
|
99 |
-
max_seq_length = max_seq_length,
|
100 |
-
dtype = dtype,
|
101 |
-
load_in_4bit = load_in_4bit,
|
102 |
-
device_map="auto"
|
103 |
-
)
|
104 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
105 |
-
|
106 |
-
input_prompt = """
|
107 |
-
### Instruction:
|
108 |
-
{}
|
109 |
-
|
110 |
-
### Input:
|
111 |
-
{}
|
112 |
-
|
113 |
-
### Response:
|
114 |
-
{}"""
|
115 |
-
|
116 |
-
input_text = input_prompt.format(
|
117 |
-
"Tranlsate following sentence to Hindi.", # instruction
|
118 |
-
"India is a great country.", # input
|
119 |
-
"", # output - leave this blank for generation!
|
120 |
-
)
|
121 |
-
|
122 |
-
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
|
123 |
-
|
124 |
-
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
|
125 |
-
response = tokenizer.batch_decode(outputs)
|
126 |
-
```
|
127 |
-
|
128 |
-
# Inference with HuggingFace
|
129 |
-
|
130 |
-
```python3
|
131 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
132 |
-
import torch
|
133 |
-
|
134 |
-
model = AutoModelForCausalLM.from_pretrained(
|
135 |
-
"Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
|
136 |
-
load_in_4bit = False,
|
137 |
-
token = hf_token
|
138 |
-
)
|
139 |
-
model.to("cuda")
|
140 |
-
|
141 |
-
tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0")
|
142 |
-
|
143 |
-
input_prompt = """
|
144 |
-
### Instruction:
|
145 |
-
{}
|
146 |
-
|
147 |
-
### Input:
|
148 |
-
{}
|
149 |
-
|
150 |
-
### Response:
|
151 |
-
{}"""
|
152 |
-
|
153 |
-
input_text = input_prompt.format(
|
154 |
-
"Tranlsate following sentence to Hindi.", # instruction
|
155 |
-
"India is a great country.", # input
|
156 |
-
"", # output - leave this blank for generation!
|
157 |
-
)
|
158 |
-
|
159 |
-
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
|
160 |
-
|
161 |
-
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
|
162 |
-
response = tokenizer.batch_decode(outputs)[0]
|
163 |
-
```
|
164 |
-
|
165 |
-
Refer to the [blog post](https://ravidesetty.medium.com/introducing-navarasa-2-0-indic-gemma-7b-2b-instruction-tuned-model-on-15-indian-languages-31f6565b2750) for sample examples.
|
166 |
-
|
167 |
-
Please check our [Code Repository](https://github.com/TeluguLLMLabs/Indic-gemma-7b-Navarasa) for training and inference scripts.
|
168 |
-
|
169 |
-
|
170 |
-
# Developers:
|
171 |
-
|
172 |
-
The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.
|
|
|
1 |
+
license: other
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|