Prashantmdgl9 commited on
Commit
c913ab8
·
verified ·
1 Parent(s): b6414ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -172
README.md CHANGED
@@ -1,172 +1 @@
1
- ---
2
- license: other
3
- license_name: gemma-terms-of-use
4
- license_link: https://ai.google.dev/gemma/terms
5
- base_model: google/gemma-2b
6
- datasets:
7
- - ravithejads/samvaad-hi-filtered
8
- - Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
9
- - Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
10
- - Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
11
- - Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
12
- - Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
13
- - Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
14
- - Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
15
- - Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
16
- - abhinand/tamil-alpaca
17
- - Tensoic/airoboros-3.2_kn
18
- - Tensoic/gpt-teacher_kn
19
- - VishnuPJ/Alpaca_Instruct_Malayalam
20
- - Tensoic/Alpaca-Gujarati
21
- - HydraIndicLM/punjabi_alpaca_52K
22
- - HydraIndicLM/bengali_alpaca_dolly_67k
23
- - OdiaGenAI/Odia_Alpaca_instructions_52k
24
- - yahma/alpaca-cleaned
25
- language:
26
- - te
27
- - en
28
- - ta
29
- - ml
30
- - mr
31
- - hi
32
- - kn
33
- - sd
34
- - ne
35
- - ur
36
- - as
37
- - gu
38
- - bn
39
- - pa
40
- - or
41
- library_name: transformers
42
- pipeline_tag: text-generation
43
- ---
44
-
45
- # Indic-gemma-2b-finetuned-sft-Navarasa-2.0
46
-
47
- This model is based on [google/gemma-2b](https://huggingface.co/google/gemma-2b) and hase been LoRA finetuned on 15 Indian languages and English language instruction datasets:
48
-
49
- 1. #### Hindi - [ravithejads/samvaad-hi-filtered](https://huggingface.co/datasets/ravithejads/samvaad-hi-filtered), [HydraIndicLM/hindi_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/hindi_alpaca_dolly_67k)(sampled)
50
- 2. #### Telugu - [Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized), [Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized)
51
- 3. #### Marathi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
52
- 4. #### Urdu - [Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered)
53
- 5. #### Assamese - [Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered)
54
- 6. #### Konkani - [Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered)
55
- 7. #### Nepali - [Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered)
56
- 8. #### Sindhi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
57
- 9. #### Tamil - [abhinand/tamil-alpaca](https://huggingface.co/datasets/abhinand/tamil-alpaca)
58
- 10. #### Kannada - [Tensoic/airoboros-3.2_kn](https://huggingface.co/datasets/Tensoic/airoboros-3.2_kn), [Tensoic/gpt-teacher_kn](https://huggingface.co/datasets/Tensoic/gpt-teacher_kn)
59
- 11. #### Malayalam - [VishnuPJ/Alpaca_Instruct_Malayalam](https://huggingface.co/datasets/VishnuPJ/Alpaca_Instruct_Malayalam)
60
- 12. #### Gujarati - [Tensoic/Alpaca-Gujarati](https://huggingface.co/datasets/Tensoic/Alpaca-Gujarati)
61
- 13. #### Punjabi - [HydraIndicLM/punjabi_alpaca_52K](https://huggingface.co/datasets/HydraIndicLM/punjabi_alpaca_52K)
62
- 14. #### Bengali - [HydraIndicLM/bengali_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/bengali_alpaca_dolly_67k)(alpaca filtered)
63
- 15. #### Odia - [OdiaGenAI/Odia_Alpaca_instructions_52k](https://huggingface.co/datasets/OdiaGenAI/Odia_Alpaca_instructions_52k), [OdiaGenAI/gpt-teacher-roleplay-odia-3k](https://huggingface.co/datasets/OdiaGenAI/gpt-teacher-roleplay-odia-3k)
64
- 16. #### English - [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
65
-
66
- The model is finetuned using [unsloth](https://github.com/unslothai/unsloth) library and we provide inference code using the same for faster inference. Alternatively you can use HuggingFace Library for inference.
67
-
68
- # Training Details:
69
-
70
- The model is trained on approx 650K instruction samples.
71
- 1. GPU: 1 A100, 80GB
72
- 2. Time: 45 Hours
73
- 3. Platform: [E2E Networks](https://www.e2enetworks.com/)
74
- # Installation
75
-
76
- `!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121`
77
- `!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"`
78
-
79
- # Input Text Format
80
-
81
- ```
82
- ### Instruction: {instruction}
83
-
84
- ### Input: {input}
85
-
86
- ## Response: {response}
87
- ```
88
-
89
- # Inference With Unsloth
90
-
91
- ```python3
92
- from unsloth import FastLanguageModel
93
- import torch
94
- max_seq_length = 2048
95
- dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
96
- load_in_4bit = False
97
- model, tokenizer = FastLanguageModel.from_pretrained(
98
- model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
99
- max_seq_length = max_seq_length,
100
- dtype = dtype,
101
- load_in_4bit = load_in_4bit,
102
- device_map="auto"
103
- )
104
- FastLanguageModel.for_inference(model) # Enable native 2x faster inference
105
-
106
- input_prompt = """
107
- ### Instruction:
108
- {}
109
-
110
- ### Input:
111
- {}
112
-
113
- ### Response:
114
- {}"""
115
-
116
- input_text = input_prompt.format(
117
- "Tranlsate following sentence to Hindi.", # instruction
118
- "India is a great country.", # input
119
- "", # output - leave this blank for generation!
120
- )
121
-
122
- inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
123
-
124
- outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
125
- response = tokenizer.batch_decode(outputs)
126
- ```
127
-
128
- # Inference with HuggingFace
129
-
130
- ```python3
131
- from transformers import AutoTokenizer, AutoModelForCausalLM
132
- import torch
133
-
134
- model = AutoModelForCausalLM.from_pretrained(
135
- "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
136
- load_in_4bit = False,
137
- token = hf_token
138
- )
139
- model.to("cuda")
140
-
141
- tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0")
142
-
143
- input_prompt = """
144
- ### Instruction:
145
- {}
146
-
147
- ### Input:
148
- {}
149
-
150
- ### Response:
151
- {}"""
152
-
153
- input_text = input_prompt.format(
154
- "Tranlsate following sentence to Hindi.", # instruction
155
- "India is a great country.", # input
156
- "", # output - leave this blank for generation!
157
- )
158
-
159
- inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
160
-
161
- outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
162
- response = tokenizer.batch_decode(outputs)[0]
163
- ```
164
-
165
- Refer to the [blog post](https://ravidesetty.medium.com/introducing-navarasa-2-0-indic-gemma-7b-2b-instruction-tuned-model-on-15-indian-languages-31f6565b2750) for sample examples.
166
-
167
- Please check our [Code Repository](https://github.com/TeluguLLMLabs/Indic-gemma-7b-Navarasa) for training and inference scripts.
168
-
169
-
170
- # Developers:
171
-
172
- The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.
 
1
+ license: other