# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 9 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 122875904 - **Learning Rate**: 0.0002 - **L1 Coefficient**: 0.3000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 64 - **Dead Features**: 0 - **Mean Log10 Feature Sparsity**: -3.3087 - **Features Below 1e-5**: 1 - **Features Below 1e-6**: 0 - **Mean Passes Since Fired**: 9.4857 ### Reconstruction - **Explained Variance**: 0.8555 - **Explained Variance Std**: 0.0391 - **MSE Loss**: 0.0011 - **L1 Loss**: 0 - **Overall Loss**: 0.0011 ## Training Details - **Training Duration**: 17939.6787 seconds - **Final Learning Rate**: 0.0002 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Weights & Biases Run**: https://wandb.ai/perceptual-alignment/clip/runs/vv5nve4a - **Original Checkpoint Path**: /network/scratch/s/sonia.joseph/checkpoints/clip-b - **Random Seed**: 42