LegalNLP / legalnlp /get_premodel.py
Projeto's picture
Create get_premodel.py
deda615
raw
history blame
3.28 kB
import wget
import zipfile
def get_premodel(model):
modelv = False
d = None
if model == 'bert':
# BERTikal
url = 'https://ndownloader.figshare.com/files/30446754'
filename = wget.download(url, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename, "r") as zip_ref:
zip_ref.extractall(d+filename.replace('.zip', ''))
modelv = True
# Download files to use in Word2Vec and Doc2Vec
if model == 'wodc':
url2 = 'https://ndownloader.figshare.com/files/30446736'
filename2 = wget.download(url2, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# Download Word2Vec of NILC
if model == 'w2vnilc':
url2 = 'http://143.107.183.175:22980/download.php?file=embeddings/word2vec/cbow_s100.zip'
filename2 = wget.download(url2, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# Download files to use Phraser model
if model == 'phraser':
url2 = 'https://ndownloader.figshare.com/files/30446727'
filename2 = wget.download(url2, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# Download files to use Fast Text model
if model == 'fasttext':
url2 = 'https://ndownloader.figshare.com/files/30446739'
filename2 = wget.download(url2, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# Download files to use NeuralMind pre-model base
if model == 'neuralmindbase':
url2 = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-base-portuguese-cased/bert-base-portuguese-cased_pytorch_checkpoint.zip'
url_vocab = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-base-portuguese-cased/vocab.txt'
filename2 = wget.download(url2, out=d)
filename3 = wget.download(url_vocab, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# Download files to use NeuralMind pre-model large
if model == 'neuralmindlarge':
url2 = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-large-portuguese-cased/bert-large-portuguese-cased_pytorch_checkpoint.zip'
url_vocab = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-large-portuguese-cased/vocab.txt'
filename2 = wget.download(url2, out=d)
filename3 = wget.download(url_vocab, out=d)
if d == None:
d = ''
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
zip_ref.extractall(d+filename2.replace('.zip', ''))
modelv = True
# If don't download any model return false, else return true
return modelv