Update README.md
Browse files
README.md
CHANGED
@@ -30,14 +30,15 @@ tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
|
30 |
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
31 |
|
32 |
# Example sentence
|
33 |
-
text = "The model was fine-tuned using knowledge distillation techniques."
|
34 |
|
35 |
# Tokenize and generate translation
|
36 |
tokenizer.src_lang = "en"
|
37 |
-
encoded = tokenizer(text, return_tensors="pt")
|
38 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id("ko"))
|
39 |
-
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
40 |
-
|
|
|
41 |
|
42 |
```
|
43 |
|
|
|
30 |
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
31 |
|
32 |
# Example sentence
|
33 |
+
text = "The model was fine-tuned using knowledge distillation techniques. The training dataset was created using a collaborative multi-agent framework powered by large language models."
|
34 |
|
35 |
# Tokenize and generate translation
|
36 |
tokenizer.src_lang = "en"
|
37 |
+
encoded = tokenizer(text.split('. '), return_tensors="pt", padding=True)
|
38 |
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id("ko"))
|
39 |
+
outputs = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
40 |
+
print(' '.join(outputs))
|
41 |
+
# => "์ด ๋ชจ๋ธ์ ์ง์ ์ฆ๋ฅ ๊ธฐ๋ฒ(knowledge distillation techniques)์ ์ฌ์ฉํ์ฌ ๋ฏธ์ธ ์กฐ์ ๋์์ต๋๋ค. ํ๋ จ ๋ฐ์ดํฐ์
(training dataset)์ ๋ํ ์ธ์ด ๋ชจ๋ธ(large language models)์ ๊ธฐ๋ฐ์ผ๋ก ํ ํ์
๋ค์ค ์์ด์ ํธ ํ๋ ์์ํฌ(collaborative multi-agent framework)๋ฅผ ์ฌ์ฉํ์ฌ ์์ฑ๋์์ต๋๋ค."
|
42 |
|
43 |
```
|
44 |
|