johnrachwanpruna
commited on
Commit
•
039dbfb
1
Parent(s):
a11d5f5
Update README.md
Browse files
README.md
CHANGED
@@ -70,43 +70,51 @@ You can run the smashed model with these steps:
|
|
70 |
2. Load & run the model.
|
71 |
```python
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
```
|
111 |
|
112 |
## Configurations
|
|
|
70 |
2. Load & run the model.
|
71 |
```python
|
72 |
|
73 |
+
import torch
|
74 |
+
|
75 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
76 |
+
|
77 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
78 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
79 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
80 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
81 |
+
|
82 |
+
dtype = torch.bfloat16
|
83 |
+
|
84 |
+
bfl_repo = "black-forest-labs/FLUX.1-schnell"
|
85 |
+
revision = "refs/pr/1"
|
86 |
+
local_path = "FLUX.1-schnell-8bit"
|
87 |
+
|
88 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision=revision)
|
89 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
90 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
91 |
+
text_encoder_2 = torch.load(local_path + '/text_encoder_2.pt')
|
92 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision=revision)
|
93 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision=revision)
|
94 |
+
transformer = torch.load(local_path + '/transformer.pt')
|
95 |
+
|
96 |
+
pipe = FluxPipeline(
|
97 |
+
scheduler=scheduler,
|
98 |
+
text_encoder=text_encoder,
|
99 |
+
tokenizer=tokenizer,
|
100 |
+
text_encoder_2=None,
|
101 |
+
tokenizer_2=tokenizer_2,
|
102 |
+
vae=vae,
|
103 |
+
transformer=None,
|
104 |
+
)
|
105 |
+
pipe.text_encoder_2 = text_encoder_2
|
106 |
+
pipe.transformer = transformer
|
107 |
+
pipe.enable_model_cpu_offload()
|
108 |
+
|
109 |
+
generator = torch.Generator().manual_seed(12345)
|
110 |
+
image = pipe(
|
111 |
+
prompt,
|
112 |
+
guidance_scale=0.0,
|
113 |
+
num_inference_steps=4,
|
114 |
+
max_sequence_length=256,
|
115 |
+
generator=torch.Generator("cpu").manual_seed(0)
|
116 |
+
).images[0]
|
117 |
+
image.save("flux-schnell.png")
|
118 |
```
|
119 |
|
120 |
## Configurations
|