f7243118a058fbafbb5a1b9892398ade5150fc2cfe2559a2109f979291b79be7
Browse files- README.md +85 -0
- added_tokens.json +42 -0
- config.json +84 -0
- configuration_imp.py +293 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- modeling_imp.py +1297 -0
- smash_config.json +31 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +344 -0
- vision_encoder.py +594 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: MILVLG/imp-v1-3b
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
tags:
|
12 |
+
- pruna-ai
|
13 |
+
---
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
18 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
19 |
+
</a>
|
20 |
+
</div>
|
21 |
+
<!-- header end -->
|
22 |
+
|
23 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
24 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
25 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
26 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
|
27 |
+
|
28 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
29 |
+
|
30 |
+
- Give a thumbs up if you like this model!
|
31 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
+
|
36 |
+
## Results
|
37 |
+
|
38 |
+
![image info](./plots.png)
|
39 |
+
|
40 |
+
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
+
- ***What is the model format?*** We use safetensors.
|
45 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
47 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
48 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
49 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
50 |
+
|
51 |
+
## Setup
|
52 |
+
|
53 |
+
You can run the smashed model with these steps:
|
54 |
+
|
55 |
+
0. Check requirements from the original repo MILVLG/imp-v1-3b installed. In particular, check python, cuda, and transformers versions.
|
56 |
+
1. Make sure that you have installed quantization related packages.
|
57 |
+
```bash
|
58 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
59 |
+
```
|
60 |
+
2. Load & run the model.
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/MILVLG-imp-v1-3b-bnb-4bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1-3b")
|
67 |
+
|
68 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
+
|
70 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
71 |
+
tokenizer.decode(outputs[0])
|
72 |
+
```
|
73 |
+
|
74 |
+
## Configurations
|
75 |
+
|
76 |
+
The configuration info are in `smash_config.json`.
|
77 |
+
|
78 |
+
## Credits & License
|
79 |
+
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model MILVLG/imp-v1-3b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
+
|
82 |
+
## Want to compress other models?
|
83 |
+
|
84 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
added_tokens.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257,
|
40 |
+
"</s>": 50295,
|
41 |
+
"<image>": 50296
|
42 |
+
}
|
config.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/ceph/hdd/staff/charpent/.cache/models1ogh7zr57phyperr",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"ImpForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"attn_pdrop": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_imp.ImpConfig",
|
11 |
+
"AutoModelForCausalLM": "modeling_imp.ImpForCausalLM"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"embd_pdrop": 0.0,
|
15 |
+
"eos_token_id": 50295,
|
16 |
+
"freeze_mm_mlp_adapter": false,
|
17 |
+
"hidden_act": "gelu_new",
|
18 |
+
"hidden_size": 2560,
|
19 |
+
"image_aspect_ratio": "square",
|
20 |
+
"image_token": "<image>",
|
21 |
+
"image_token_index": 50296,
|
22 |
+
"img_processor": null,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 10240,
|
25 |
+
"layer_norm_eps": 1e-05,
|
26 |
+
"max_position_embeddings": 3072,
|
27 |
+
"mm_hidden_size": 1152,
|
28 |
+
"mm_projector_lr": 2e-05,
|
29 |
+
"mm_projector_type": "mlp2x_gelu",
|
30 |
+
"mm_use_im_patch_token": false,
|
31 |
+
"mm_use_im_start_end": false,
|
32 |
+
"mm_vision_select_feature": "patch",
|
33 |
+
"mm_vision_select_layer": -2,
|
34 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
35 |
+
"model_type": "imp",
|
36 |
+
"num_attention_heads": 32,
|
37 |
+
"num_hidden_layers": 32,
|
38 |
+
"num_key_value_heads": 32,
|
39 |
+
"pad_token_id": 50256,
|
40 |
+
"partial_rotary_factor": 0.4,
|
41 |
+
"qk_layernorm": false,
|
42 |
+
"quantization_config": {
|
43 |
+
"_load_in_4bit": true,
|
44 |
+
"_load_in_8bit": false,
|
45 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
46 |
+
"bnb_4bit_quant_storage": "uint8",
|
47 |
+
"bnb_4bit_quant_type": "fp4",
|
48 |
+
"bnb_4bit_use_double_quant": false,
|
49 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
50 |
+
"llm_int8_has_fp16_weight": false,
|
51 |
+
"llm_int8_skip_modules": [
|
52 |
+
"lm_head"
|
53 |
+
],
|
54 |
+
"llm_int8_threshold": 6.0,
|
55 |
+
"load_in_4bit": true,
|
56 |
+
"load_in_8bit": false,
|
57 |
+
"quant_method": "bitsandbytes"
|
58 |
+
},
|
59 |
+
"resid_pdrop": 0.1,
|
60 |
+
"rope_scaling": null,
|
61 |
+
"rope_theta": 10000.0,
|
62 |
+
"tie_word_embeddings": false,
|
63 |
+
"tokenizer_model_max_length": 3072,
|
64 |
+
"tokenizer_padding_side": "right",
|
65 |
+
"torch_dtype": "float16",
|
66 |
+
"transformers_version": "4.42.4",
|
67 |
+
"use_cache": true,
|
68 |
+
"use_mm_proj": true,
|
69 |
+
"vision_tower_config": {
|
70 |
+
"attention_dropout": 0.0,
|
71 |
+
"attn_implementation": null,
|
72 |
+
"hidden_act": "gelu_pytorch_tanh",
|
73 |
+
"hidden_size": 1152,
|
74 |
+
"image_size": 384,
|
75 |
+
"intermediate_size": 4304,
|
76 |
+
"layer_norm_eps": 1e-06,
|
77 |
+
"model_type": "siglip_vision_model",
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_channels": 3,
|
80 |
+
"num_hidden_layers": 27,
|
81 |
+
"patch_size": 14
|
82 |
+
},
|
83 |
+
"vocab_size": 51200
|
84 |
+
}
|
configuration_imp.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
#
|
9 |
+
# We keep their original copyright statements as follows, which should be inherited:
|
10 |
+
# ------------------------------- Phi-2 ---------------------------------------------
|
11 |
+
# Copyright (c) Microsoft Corporation.
|
12 |
+
# Licensed under the MIT license.
|
13 |
+
# https://huggingface.co/google/siglip-so400m-patch14-384
|
14 |
+
#
|
15 |
+
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
16 |
+
# Licensed under the BSD 3-Clause License.
|
17 |
+
# ------------------------------- SigLIP --------------------------------------------
|
18 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
19 |
+
#
|
20 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
21 |
+
# you may not use this file except in compliance with the License.
|
22 |
+
# You may obtain a copy of the License at
|
23 |
+
#
|
24 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
25 |
+
#
|
26 |
+
# Unless required by applicable law or agreed to in writing, software
|
27 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
28 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
29 |
+
# See the License for the specific language governing permissions and
|
30 |
+
# limitations under the License.
|
31 |
+
# ------------------------------- Llava ---------------------------------------------
|
32 |
+
# Copyright 2023 Haotian Liu
|
33 |
+
#
|
34 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
35 |
+
# you may not use this file except in compliance with the License.
|
36 |
+
# You may obtain a copy of the License at
|
37 |
+
#
|
38 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
39 |
+
#
|
40 |
+
# Unless required by applicable law or agreed to in writing, software
|
41 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
42 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
43 |
+
# See the License for the specific language governing permissions and
|
44 |
+
# limitations under the License.
|
45 |
+
# -----------------------------------------------------------------------------------
|
46 |
+
|
47 |
+
|
48 |
+
import os
|
49 |
+
import math
|
50 |
+
from typing import Optional, Union
|
51 |
+
|
52 |
+
from transformers import PretrainedConfig
|
53 |
+
from transformers.utils import logging
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
|
58 |
+
class PhiConfig(PretrainedConfig):
|
59 |
+
r"""
|
60 |
+
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
61 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
62 |
+
defaults will yield a similar configuration to that of the Phi
|
63 |
+
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
64 |
+
|
65 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
66 |
+
documentation from [`PretrainedConfig`] for more information.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
70 |
+
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
71 |
+
`inputs_ids` passed when calling [`PhiModel`].
|
72 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
73 |
+
Dimension of the hidden representations.
|
74 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
75 |
+
Dimension of the MLP representations.
|
76 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
77 |
+
Number of hidden layers in the Transformer decoder.
|
78 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
79 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
80 |
+
num_key_value_heads (`int`, *optional*):
|
81 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
82 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
83 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
84 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
85 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
86 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
87 |
+
`num_attention_heads`.
|
88 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
89 |
+
Dropout probability for mlp outputs.
|
90 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the embeddings.
|
92 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
93 |
+
The dropout ratio after computing the attention scores.
|
94 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
95 |
+
The non-linear activation function (function or string) in the decoder.
|
96 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
97 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
98 |
+
tokens.
|
99 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
100 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
101 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
102 |
+
The epsilon used by the rms normalization layers.
|
103 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
105 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
106 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether to tie weight embeddings
|
108 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
109 |
+
The base period of the RoPE embeddings.
|
110 |
+
rope_scaling (`Dict`, *optional*):
|
111 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
112 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
113 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
114 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
115 |
+
these scaling strategies behave:
|
116 |
+
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
117 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
118 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
119 |
+
Percentage of the query and keys which will have rotary embedding.
|
120 |
+
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
122 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
123 |
+
Denotes beginning of sequences token id.
|
124 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
125 |
+
Denotes end of sequences token id.
|
126 |
+
|
127 |
+
Example:
|
128 |
+
|
129 |
+
```python
|
130 |
+
>>> from transformers import PhiModel, PhiConfig
|
131 |
+
|
132 |
+
>>> # Initializing a Phi-1 style configuration
|
133 |
+
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
134 |
+
|
135 |
+
>>> # Initializing a model from the configuration
|
136 |
+
>>> model = PhiModel(configuration)
|
137 |
+
|
138 |
+
>>> # Accessing the model configuration
|
139 |
+
>>> configuration = model.config
|
140 |
+
```"""
|
141 |
+
|
142 |
+
model_type = "phi"
|
143 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
vocab_size=51200,
|
148 |
+
hidden_size=2048,
|
149 |
+
intermediate_size=8192,
|
150 |
+
num_hidden_layers=32, #24
|
151 |
+
num_attention_heads=32,
|
152 |
+
num_key_value_heads=None,
|
153 |
+
resid_pdrop=0.0,
|
154 |
+
embd_pdrop=0.0,
|
155 |
+
attention_dropout=0.0,
|
156 |
+
hidden_act="gelu_new",
|
157 |
+
max_position_embeddings=2048,
|
158 |
+
initializer_range=0.02,
|
159 |
+
layer_norm_eps=1e-5,
|
160 |
+
use_cache=True,
|
161 |
+
tie_word_embeddings=False,
|
162 |
+
rope_theta=10000.0,
|
163 |
+
rope_scaling=None,
|
164 |
+
partial_rotary_factor=0.5,
|
165 |
+
qk_layernorm=False,
|
166 |
+
bos_token_id=1,
|
167 |
+
eos_token_id=2,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
self.vocab_size = vocab_size
|
171 |
+
self.hidden_size = hidden_size
|
172 |
+
self.intermediate_size = intermediate_size
|
173 |
+
self.num_hidden_layers = num_hidden_layers
|
174 |
+
self.num_attention_heads = num_attention_heads
|
175 |
+
|
176 |
+
if num_key_value_heads is None:
|
177 |
+
num_key_value_heads = num_attention_heads
|
178 |
+
|
179 |
+
self.num_key_value_heads = num_key_value_heads
|
180 |
+
self.resid_pdrop = resid_pdrop
|
181 |
+
self.embd_pdrop = embd_pdrop
|
182 |
+
self.attention_dropout = attention_dropout
|
183 |
+
self.hidden_act = hidden_act
|
184 |
+
self.max_position_embeddings = max_position_embeddings
|
185 |
+
self.initializer_range = initializer_range
|
186 |
+
self.layer_norm_eps = layer_norm_eps
|
187 |
+
self.use_cache = use_cache
|
188 |
+
self.rope_theta = rope_theta
|
189 |
+
self.rope_scaling = rope_scaling
|
190 |
+
self.partial_rotary_factor = partial_rotary_factor
|
191 |
+
self.qk_layernorm = qk_layernorm
|
192 |
+
self._rope_scaling_validation()
|
193 |
+
|
194 |
+
super().__init__(
|
195 |
+
bos_token_id=bos_token_id,
|
196 |
+
eos_token_id=eos_token_id,
|
197 |
+
tie_word_embeddings=tie_word_embeddings,
|
198 |
+
**kwargs,
|
199 |
+
)
|
200 |
+
|
201 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
202 |
+
def _rope_scaling_validation(self):
|
203 |
+
"""
|
204 |
+
Validate the `rope_scaling` configuration.
|
205 |
+
"""
|
206 |
+
if self.rope_scaling is None:
|
207 |
+
return
|
208 |
+
|
209 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
210 |
+
raise ValueError(
|
211 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
212 |
+
f"got {self.rope_scaling}"
|
213 |
+
)
|
214 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
215 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
216 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
217 |
+
raise ValueError(
|
218 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
219 |
+
)
|
220 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
221 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
222 |
+
|
223 |
+
|
224 |
+
class SiglipVisionConfig(PretrainedConfig):
|
225 |
+
|
226 |
+
model_type = "siglip_vision_model"
|
227 |
+
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
hidden_size=768,
|
231 |
+
intermediate_size=3072,
|
232 |
+
num_hidden_layers=12,
|
233 |
+
num_attention_heads=12,
|
234 |
+
num_channels=3,
|
235 |
+
image_size=224,
|
236 |
+
patch_size=16,
|
237 |
+
hidden_act="gelu_pytorch_tanh",
|
238 |
+
layer_norm_eps=1e-6,
|
239 |
+
attention_dropout=0.0,
|
240 |
+
**kwargs,
|
241 |
+
):
|
242 |
+
super().__init__(**kwargs)
|
243 |
+
|
244 |
+
self.hidden_size = hidden_size
|
245 |
+
self.intermediate_size = intermediate_size
|
246 |
+
self.num_hidden_layers = num_hidden_layers
|
247 |
+
self.num_attention_heads = num_attention_heads
|
248 |
+
self.num_channels = num_channels
|
249 |
+
self.patch_size = patch_size
|
250 |
+
self.image_size = image_size
|
251 |
+
self.attention_dropout = attention_dropout
|
252 |
+
self.layer_norm_eps = layer_norm_eps
|
253 |
+
self.hidden_act = hidden_act
|
254 |
+
|
255 |
+
@classmethod
|
256 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
257 |
+
cls._set_token_in_kwargs(kwargs)
|
258 |
+
|
259 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
260 |
+
|
261 |
+
# get the vision config dict if we are loading from SiglipConfig
|
262 |
+
if config_dict.get("model_type") == "siglip":
|
263 |
+
config_dict = config_dict["vision_config"]
|
264 |
+
|
265 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
266 |
+
logger.warning(
|
267 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
268 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
269 |
+
)
|
270 |
+
|
271 |
+
return cls.from_dict(config_dict, **kwargs)
|
272 |
+
|
273 |
+
|
274 |
+
class ImpConfig(PhiConfig):
|
275 |
+
model_type = "imp"
|
276 |
+
|
277 |
+
def __init__(self, **kwargs):
|
278 |
+
super().__init__(**kwargs)
|
279 |
+
self.image_token_index = getattr(self, "image_token_index", 50296)
|
280 |
+
self.image_token = getattr(self, "image_token", "<image>")
|
281 |
+
|
282 |
+
if not hasattr(self, "vision_tower_config") and hasattr(self, "mm_vision_tower"):
|
283 |
+
vision_tower_config = SiglipVisionConfig.from_pretrained(self.mm_vision_tower)
|
284 |
+
self.vision_tower_config = vision_tower_config.to_diff_dict()
|
285 |
+
|
286 |
+
@property
|
287 |
+
def vision_tower_cfg(self):
|
288 |
+
cfg = SiglipVisionConfig.from_dict(self.vision_tower_config)
|
289 |
+
# imp-v1 only supports `patch` feature for now w/o cls token
|
290 |
+
# cfg.mm_vision_select_feature = self.mm_vision_select_feature
|
291 |
+
cfg.mm_vision_select_layer = self.mm_vision_select_layer
|
292 |
+
cfg.mm_vision_tower = self.mm_vision_tower
|
293 |
+
return cfg
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 50295,
|
4 |
+
"pad_token_id": 50256,
|
5 |
+
"transformers_version": "4.42.4"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_imp.py
ADDED
@@ -0,0 +1,1297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
# And their original licenses and copyright should be inherited (see the statements
|
9 |
+
# in `configuration_imp.py` for more details).
|
10 |
+
|
11 |
+
|
12 |
+
# Be careful: The way how `past_key_values.seqlen_offset` is updated is modified from
|
13 |
+
# the implementation of original Phi-2. See the comments below for details.
|
14 |
+
|
15 |
+
from __future__ import annotations
|
16 |
+
import os
|
17 |
+
import math
|
18 |
+
import re
|
19 |
+
# from dataclasses import dataclass, field
|
20 |
+
from typing import Any, Dict, Optional, Tuple, Union, List
|
21 |
+
from abc import ABC, abstractmethod
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from transformers import (
|
30 |
+
PretrainedConfig,
|
31 |
+
PreTrainedModel,
|
32 |
+
AutoConfig,
|
33 |
+
AutoModelForCausalLM
|
34 |
+
)
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from transformers.cache_utils import Cache, DynamicCache
|
37 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPast,
|
40 |
+
CausalLMOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
TokenClassifierOutput,
|
43 |
+
)
|
44 |
+
from transformers.modeling_utils import PreTrainedModel
|
45 |
+
from transformers.utils import (
|
46 |
+
add_code_sample_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
is_flash_attn_2_available,
|
50 |
+
is_flash_attn_greater_or_equal_2_10,
|
51 |
+
logging,
|
52 |
+
replace_return_docstrings,
|
53 |
+
)
|
54 |
+
import sys
|
55 |
+
from .configuration_imp import PhiConfig, ImpConfig
|
56 |
+
from .vision_encoder import VisionTower
|
57 |
+
|
58 |
+
try:
|
59 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
61 |
+
except:
|
62 |
+
pass
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__)
|
65 |
+
|
66 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
|
67 |
+
class PhiRotaryEmbedding(nn.Module):
|
68 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
69 |
+
super().__init__()
|
70 |
+
|
71 |
+
self.dim = dim
|
72 |
+
self.max_position_embeddings = max_position_embeddings
|
73 |
+
self.base = base
|
74 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
75 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
76 |
+
|
77 |
+
# Build here to make `torch.jit.trace` work.
|
78 |
+
self._set_cos_sin_cache(
|
79 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
80 |
+
)
|
81 |
+
|
82 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
83 |
+
self.max_seq_len_cached = seq_len
|
84 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
85 |
+
|
86 |
+
freqs = torch.outer(t, self.inv_freq)
|
87 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
88 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
89 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
90 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
91 |
+
|
92 |
+
def forward(self, x, seq_len=None):
|
93 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
94 |
+
if seq_len > self.max_seq_len_cached:
|
95 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
96 |
+
|
97 |
+
return (
|
98 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
99 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
|
104 |
+
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
|
105 |
+
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
106 |
+
|
107 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
108 |
+
self.scaling_factor = scaling_factor
|
109 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
110 |
+
|
111 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
112 |
+
self.max_seq_len_cached = seq_len
|
113 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
114 |
+
t = t / self.scaling_factor
|
115 |
+
|
116 |
+
freqs = torch.outer(t, self.inv_freq)
|
117 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
118 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
119 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
120 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
121 |
+
|
122 |
+
|
123 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
|
124 |
+
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
|
125 |
+
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
126 |
+
|
127 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
128 |
+
self.scaling_factor = scaling_factor
|
129 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
130 |
+
|
131 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
132 |
+
self.max_seq_len_cached = seq_len
|
133 |
+
|
134 |
+
if seq_len > self.max_position_embeddings:
|
135 |
+
base = self.base * (
|
136 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
137 |
+
) ** (self.dim / (self.dim - 2))
|
138 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
139 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
140 |
+
|
141 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
142 |
+
|
143 |
+
freqs = torch.outer(t, self.inv_freq)
|
144 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
145 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
146 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
147 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
148 |
+
|
149 |
+
|
150 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
151 |
+
def rotate_half(x):
|
152 |
+
"""Rotates half the hidden dims of the input."""
|
153 |
+
x1 = x[..., : x.shape[-1] // 2]
|
154 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
155 |
+
return torch.cat((-x2, x1), dim=-1)
|
156 |
+
|
157 |
+
|
158 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
159 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
160 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
q (`torch.Tensor`): The query tensor.
|
164 |
+
k (`torch.Tensor`): The key tensor.
|
165 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
166 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
167 |
+
position_ids (`torch.Tensor`):
|
168 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
169 |
+
used to pass offsetted position ids when working with a KV-cache.
|
170 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
171 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
172 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
173 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
174 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
175 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
176 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
177 |
+
Returns:
|
178 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
179 |
+
"""
|
180 |
+
temp_type=q.dtype#ouyang modified
|
181 |
+
q, k, cos, sin = [t.to(dtype=torch.float32) for t in [q, k, cos, sin]] #ouyang modified
|
182 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
183 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
184 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
185 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
186 |
+
q_embed,k_embed = q_embed.to(temp_type), k_embed.to(temp_type)#ouyang modified
|
187 |
+
return q_embed, k_embed
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
|
192 |
+
class PhiMLP(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.config = config
|
196 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
197 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
198 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
199 |
+
|
200 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
201 |
+
hidden_states = self.fc1(hidden_states)
|
202 |
+
hidden_states = self.activation_fn(hidden_states)
|
203 |
+
hidden_states = self.fc2(hidden_states)
|
204 |
+
return hidden_states
|
205 |
+
|
206 |
+
|
207 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
208 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
209 |
+
"""
|
210 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
211 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
212 |
+
"""
|
213 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
214 |
+
if n_rep == 1:
|
215 |
+
return hidden_states
|
216 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
217 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
class PhiAttention(nn.Module):
|
222 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
223 |
+
|
224 |
+
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
|
225 |
+
super().__init__()
|
226 |
+
self.config = config
|
227 |
+
self.layer_idx = layer_idx
|
228 |
+
# if layer_idx is None:
|
229 |
+
# logger.warning_once(
|
230 |
+
# f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
231 |
+
# "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
232 |
+
# "when creating this class."
|
233 |
+
# )
|
234 |
+
|
235 |
+
self.attention_dropout = config.attention_dropout
|
236 |
+
self.hidden_size = config.hidden_size
|
237 |
+
self.num_heads = config.num_attention_heads
|
238 |
+
self.head_dim = self.hidden_size // self.num_heads
|
239 |
+
self.num_key_value_heads = config.num_key_value_heads
|
240 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
241 |
+
self.max_position_embeddings = config.max_position_embeddings
|
242 |
+
self.rope_theta = config.rope_theta
|
243 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
244 |
+
self.is_causal = True
|
245 |
+
|
246 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
247 |
+
raise ValueError(
|
248 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
249 |
+
f" and `num_heads`: {self.num_heads})."
|
250 |
+
)
|
251 |
+
|
252 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
253 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
254 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
255 |
+
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
|
256 |
+
|
257 |
+
self.qk_layernorm = config.qk_layernorm
|
258 |
+
if self.qk_layernorm:
|
259 |
+
self.q_layernorm = nn.LayerNorm(
|
260 |
+
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
|
261 |
+
)
|
262 |
+
self.k_layernorm = nn.LayerNorm(
|
263 |
+
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
|
264 |
+
)
|
265 |
+
|
266 |
+
self._init_rope()
|
267 |
+
|
268 |
+
def _init_rope(self):
|
269 |
+
if self.config.rope_scaling is None:
|
270 |
+
self.rotary_emb = PhiRotaryEmbedding(
|
271 |
+
int(self.partial_rotary_factor * self.head_dim),
|
272 |
+
max_position_embeddings=self.max_position_embeddings,
|
273 |
+
base=self.rope_theta,
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
scaling_type = self.config.rope_scaling["type"]
|
277 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
278 |
+
if scaling_type == "linear":
|
279 |
+
self.rotary_emb = PhiLinearScalingRotaryEmbedding(
|
280 |
+
int(self.partial_rotary_factor * self.head_dim),
|
281 |
+
max_position_embeddings=self.max_position_embeddings,
|
282 |
+
scaling_factor=scaling_factor,
|
283 |
+
base=self.rope_theta,
|
284 |
+
)
|
285 |
+
elif scaling_type == "dynamic":
|
286 |
+
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
|
287 |
+
int(self.partial_rotary_factor * self.head_dim),
|
288 |
+
max_position_embeddings=self.max_position_embeddings,
|
289 |
+
scaling_factor=scaling_factor,
|
290 |
+
base=self.rope_theta,
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
294 |
+
|
295 |
+
# Phi-2 has an attention overflow issue (with FP16) and requires autocast to be disabled
|
296 |
+
@torch.autocast("cpu", enabled=False)
|
297 |
+
@torch.autocast("cuda", enabled=False)
|
298 |
+
def forward(
|
299 |
+
self,
|
300 |
+
hidden_states: torch.Tensor,
|
301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
302 |
+
position_ids: Optional[torch.LongTensor] = None,
|
303 |
+
past_key_value: Optional[Cache] = None,
|
304 |
+
output_attentions: bool = False,
|
305 |
+
use_cache: bool = False,
|
306 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
307 |
+
bsz, q_len, _ = hidden_states.size()
|
308 |
+
|
309 |
+
|
310 |
+
query_states = self.q_proj(hidden_states)
|
311 |
+
key_states = self.k_proj(hidden_states)
|
312 |
+
value_states = self.v_proj(hidden_states)
|
313 |
+
|
314 |
+
if self.qk_layernorm:
|
315 |
+
query_states = self.q_layernorm(query_states)
|
316 |
+
key_states = self.k_layernorm(key_states)
|
317 |
+
|
318 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
319 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
320 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
321 |
+
|
322 |
+
kv_seq_len = key_states.shape[-2]
|
323 |
+
if past_key_value is not None:
|
324 |
+
if self.layer_idx is None:
|
325 |
+
raise ValueError(
|
326 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
327 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
328 |
+
"with a layer index."
|
329 |
+
)
|
330 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
331 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
332 |
+
|
333 |
+
# Partial rotary embedding
|
334 |
+
query_rot, query_pass = (
|
335 |
+
query_states[..., : self.rotary_emb.dim],
|
336 |
+
query_states[..., self.rotary_emb.dim :],
|
337 |
+
)
|
338 |
+
key_rot, key_pass = (
|
339 |
+
key_states[..., : self.rotary_emb.dim],
|
340 |
+
key_states[..., self.rotary_emb.dim :],
|
341 |
+
)
|
342 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
343 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
344 |
+
|
345 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
346 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
347 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
348 |
+
|
349 |
+
if past_key_value is not None:
|
350 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
351 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
352 |
+
|
353 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
354 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
355 |
+
|
356 |
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
357 |
+
# attn_weights = torch.matmul(
|
358 |
+
# query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
359 |
+
# ) / math.sqrt(self.head_dim)
|
360 |
+
|
361 |
+
softmax_scale = 1.0 / math.sqrt(query_states.shape[-1])
|
362 |
+
attn_weights = torch.matmul(
|
363 |
+
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)*softmax_scale
|
364 |
+
)#ouyang modified
|
365 |
+
|
366 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
367 |
+
raise ValueError(
|
368 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
369 |
+
f" {attn_weights.size()}"
|
370 |
+
)
|
371 |
+
|
372 |
+
if attention_mask is not None:
|
373 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
374 |
+
raise ValueError(
|
375 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
376 |
+
)
|
377 |
+
attn_weights = attn_weights + attention_mask
|
378 |
+
|
379 |
+
# upcast attention to fp32
|
380 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
381 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
382 |
+
|
383 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
384 |
+
|
385 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
386 |
+
raise ValueError(
|
387 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
388 |
+
f" {attn_output.size()}"
|
389 |
+
)
|
390 |
+
|
391 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
392 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
393 |
+
|
394 |
+
|
395 |
+
attn_output = self.dense(attn_output)
|
396 |
+
|
397 |
+
if not output_attentions:
|
398 |
+
attn_weights = None
|
399 |
+
|
400 |
+
return attn_output, attn_weights, past_key_value
|
401 |
+
|
402 |
+
class PhiFlashAttention2(PhiAttention):
|
403 |
+
"""
|
404 |
+
Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
|
405 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
406 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
407 |
+
"""
|
408 |
+
|
409 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
410 |
+
def __init__(self, *args, **kwargs):
|
411 |
+
super().__init__(*args, **kwargs)
|
412 |
+
|
413 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
414 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
415 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
416 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
417 |
+
|
418 |
+
def forward(
|
419 |
+
self,
|
420 |
+
hidden_states: torch.Tensor,
|
421 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
422 |
+
position_ids: Optional[torch.LongTensor] = None,
|
423 |
+
past_key_value: Optional[Cache] = None,
|
424 |
+
output_attentions: bool = False,
|
425 |
+
use_cache: bool = False,
|
426 |
+
**kwargs,
|
427 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
428 |
+
# PhiFlashAttention2 attention does not support output_attentions
|
429 |
+
|
430 |
+
output_attentions = False
|
431 |
+
|
432 |
+
bsz, q_len, _ = hidden_states.size()
|
433 |
+
|
434 |
+
query_states = self.q_proj(hidden_states)
|
435 |
+
key_states = self.k_proj(hidden_states)
|
436 |
+
value_states = self.v_proj(hidden_states)
|
437 |
+
|
438 |
+
if self.qk_layernorm:
|
439 |
+
query_states = self.q_layernorm(query_states)
|
440 |
+
key_states = self.k_layernorm(key_states)
|
441 |
+
|
442 |
+
# Flash attention requires the input to have the shape
|
443 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
444 |
+
# therefore we just need to keep the original shape
|
445 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
446 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
447 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
448 |
+
|
449 |
+
kv_seq_len = key_states.shape[-2]
|
450 |
+
if past_key_value is not None:
|
451 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
452 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
453 |
+
|
454 |
+
# Partial rotary embedding
|
455 |
+
query_rot, query_pass = (
|
456 |
+
query_states[..., : self.rotary_emb.dim],
|
457 |
+
query_states[..., self.rotary_emb.dim :],
|
458 |
+
)
|
459 |
+
key_rot, key_pass = (
|
460 |
+
key_states[..., : self.rotary_emb.dim],
|
461 |
+
key_states[..., self.rotary_emb.dim :],
|
462 |
+
)
|
463 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
464 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
465 |
+
|
466 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
467 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
468 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
469 |
+
|
470 |
+
if past_key_value is not None:
|
471 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
472 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
473 |
+
|
474 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
475 |
+
# to be able to avoid many of these transpose/reshape/view.
|
476 |
+
query_states = query_states.transpose(1, 2)
|
477 |
+
key_states = key_states.transpose(1, 2)
|
478 |
+
value_states = value_states.transpose(1, 2)
|
479 |
+
|
480 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
481 |
+
|
482 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
483 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
484 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
485 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
486 |
+
# in fp32.
|
487 |
+
|
488 |
+
if query_states.dtype == torch.float32:
|
489 |
+
if torch.is_autocast_enabled():
|
490 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
491 |
+
# Handle the case where the model is quantized
|
492 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
493 |
+
target_dtype = self.config._pre_quantization_dtype
|
494 |
+
else:
|
495 |
+
target_dtype = self.q_proj.weight.dtype
|
496 |
+
|
497 |
+
logger.warning_once(
|
498 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
499 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
500 |
+
f" {target_dtype}."
|
501 |
+
)
|
502 |
+
|
503 |
+
query_states = query_states.to(target_dtype)
|
504 |
+
key_states = key_states.to(target_dtype)
|
505 |
+
value_states = value_states.to(target_dtype)
|
506 |
+
|
507 |
+
attn_output = self._flash_attention_forward(
|
508 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=None
|
509 |
+
)
|
510 |
+
|
511 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
512 |
+
attn_output = self.dense(attn_output)
|
513 |
+
|
514 |
+
if not output_attentions:
|
515 |
+
attn_weights = None
|
516 |
+
|
517 |
+
return attn_output, attn_weights, past_key_value
|
518 |
+
|
519 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
520 |
+
def _flash_attention_forward(
|
521 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
522 |
+
):
|
523 |
+
"""
|
524 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
525 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
query_states (`torch.Tensor`):
|
529 |
+
Input query states to be passed to Flash Attention API
|
530 |
+
key_states (`torch.Tensor`):
|
531 |
+
Input key states to be passed to Flash Attention API
|
532 |
+
value_states (`torch.Tensor`):
|
533 |
+
Input value states to be passed to Flash Attention API
|
534 |
+
attention_mask (`torch.Tensor`):
|
535 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
536 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
537 |
+
dropout (`int`, *optional*):
|
538 |
+
Attention dropout
|
539 |
+
softmax_scale (`float`, *optional*):
|
540 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
541 |
+
"""
|
542 |
+
if not self._flash_attn_uses_top_left_mask:
|
543 |
+
causal = self.is_causal
|
544 |
+
else:
|
545 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
546 |
+
causal = self.is_causal and query_length != 1
|
547 |
+
|
548 |
+
# Contains at least one padding token in the sequence
|
549 |
+
if attention_mask is not None:
|
550 |
+
batch_size = query_states.shape[0]
|
551 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
552 |
+
query_states, key_states, value_states, attention_mask, query_length
|
553 |
+
)
|
554 |
+
|
555 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
556 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
557 |
+
|
558 |
+
attn_output_unpad = flash_attn_varlen_func(
|
559 |
+
query_states,
|
560 |
+
key_states,
|
561 |
+
value_states,
|
562 |
+
cu_seqlens_q=cu_seqlens_q,
|
563 |
+
cu_seqlens_k=cu_seqlens_k,
|
564 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
565 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
566 |
+
dropout_p=dropout,
|
567 |
+
softmax_scale=softmax_scale,
|
568 |
+
causal=causal,
|
569 |
+
)
|
570 |
+
|
571 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
572 |
+
else:
|
573 |
+
attn_output = flash_attn_func(
|
574 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
575 |
+
)
|
576 |
+
|
577 |
+
return attn_output
|
578 |
+
|
579 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
580 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
581 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
582 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
583 |
+
|
584 |
+
key_layer = index_first_axis(
|
585 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
586 |
+
)
|
587 |
+
value_layer = index_first_axis(
|
588 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
589 |
+
)
|
590 |
+
if query_length == kv_seq_len:
|
591 |
+
query_layer = index_first_axis(
|
592 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
593 |
+
)
|
594 |
+
cu_seqlens_q = cu_seqlens_k
|
595 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
596 |
+
indices_q = indices_k
|
597 |
+
elif query_length == 1:
|
598 |
+
max_seqlen_in_batch_q = 1
|
599 |
+
cu_seqlens_q = torch.arange(
|
600 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
601 |
+
) # There is a memcpy here, that is very bad.
|
602 |
+
indices_q = cu_seqlens_q[:-1]
|
603 |
+
query_layer = query_layer.squeeze(1)
|
604 |
+
else:
|
605 |
+
# The -q_len: slice assumes left padding.
|
606 |
+
attention_mask = attention_mask[:, -query_length:]
|
607 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
608 |
+
|
609 |
+
return (
|
610 |
+
query_layer,
|
611 |
+
key_layer,
|
612 |
+
value_layer,
|
613 |
+
indices_q,
|
614 |
+
(cu_seqlens_q, cu_seqlens_k),
|
615 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
616 |
+
)
|
617 |
+
|
618 |
+
|
619 |
+
|
620 |
+
PHI_ATTENTION_CLASSES = {
|
621 |
+
"eager": PhiAttention,
|
622 |
+
"flash_attention_2": PhiFlashAttention2,
|
623 |
+
}
|
624 |
+
|
625 |
+
|
626 |
+
class PhiDecoderLayer(nn.Module):
|
627 |
+
def __init__(self, config: PhiConfig, layer_idx: int):
|
628 |
+
super().__init__()
|
629 |
+
self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
630 |
+
self.mlp = PhiMLP(config)
|
631 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
632 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
633 |
+
|
634 |
+
def forward(
|
635 |
+
self,
|
636 |
+
hidden_states: torch.Tensor,
|
637 |
+
attention_mask: Optional[torch.Tensor] = None,
|
638 |
+
position_ids: Optional[torch.LongTensor] = None,
|
639 |
+
output_attentions: Optional[bool] = False,
|
640 |
+
use_cache: Optional[bool] = False,
|
641 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
642 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
643 |
+
"""
|
644 |
+
Args:
|
645 |
+
hidden_states (`torch.FloatTensor`):
|
646 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
647 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
648 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
649 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
650 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
651 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
652 |
+
output_attentions (`bool`, *optional*):
|
653 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
654 |
+
returned tensors for more detail.
|
655 |
+
use_cache (`bool`, *optional*):
|
656 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
657 |
+
(see `past_key_values`).
|
658 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
659 |
+
"""
|
660 |
+
|
661 |
+
residual = hidden_states
|
662 |
+
|
663 |
+
hidden_states = self.input_layernorm(hidden_states)
|
664 |
+
|
665 |
+
# Self Attention
|
666 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
667 |
+
hidden_states=hidden_states,
|
668 |
+
attention_mask=attention_mask,
|
669 |
+
position_ids=position_ids,
|
670 |
+
past_key_value=past_key_value,
|
671 |
+
output_attentions=output_attentions,
|
672 |
+
use_cache=use_cache,
|
673 |
+
)
|
674 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
675 |
+
|
676 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
677 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
678 |
+
outputs = (hidden_states,)
|
679 |
+
|
680 |
+
if output_attentions:
|
681 |
+
outputs += (self_attn_weights,)
|
682 |
+
|
683 |
+
if use_cache:
|
684 |
+
outputs += (present_key_value,)
|
685 |
+
|
686 |
+
return outputs
|
687 |
+
|
688 |
+
|
689 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
690 |
+
"""Phi pre-trained model."""
|
691 |
+
|
692 |
+
config_class = PhiConfig
|
693 |
+
base_model_prefix = "model"
|
694 |
+
supports_gradient_checkpointing = True
|
695 |
+
_no_split_modules = ["PhiDecoderLayer"]
|
696 |
+
_skip_keys_device_placement = "past_key_values"
|
697 |
+
_supports_flash_attn_2 = True
|
698 |
+
_supports_cache_class = True
|
699 |
+
|
700 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
701 |
+
super().__init__(*inputs, **kwargs)
|
702 |
+
|
703 |
+
def _init_weights(self, module):
|
704 |
+
std = self.config.initializer_range
|
705 |
+
if isinstance(module, nn.Linear):
|
706 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
707 |
+
if module.bias is not None:
|
708 |
+
module.bias.data.zero_()
|
709 |
+
elif isinstance(module, nn.Embedding):
|
710 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
711 |
+
if module.padding_idx is not None:
|
712 |
+
module.weight.data[module.padding_idx].zero_()
|
713 |
+
|
714 |
+
def prepare_inputs_for_generation(
|
715 |
+
self,
|
716 |
+
input_ids: torch.LongTensor,
|
717 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
718 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
719 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
720 |
+
**kwargs,
|
721 |
+
) -> Dict[str, Any]:
|
722 |
+
if past_key_values is not None:
|
723 |
+
if isinstance(past_key_values, Cache):
|
724 |
+
cache_length = past_key_values.get_seq_length()
|
725 |
+
past_length = past_key_values.seen_tokens
|
726 |
+
max_cache_length = past_key_values.get_max_length()
|
727 |
+
else:
|
728 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
729 |
+
max_cache_length = None
|
730 |
+
|
731 |
+
# Keep only the unprocessed tokens:
|
732 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
733 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
734 |
+
# input)
|
735 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
736 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
737 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
738 |
+
# input_ids based on the past_length.
|
739 |
+
elif past_length < input_ids.shape[1]:
|
740 |
+
input_ids = input_ids[:, past_length:]
|
741 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
742 |
+
|
743 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
744 |
+
if (
|
745 |
+
max_cache_length is not None
|
746 |
+
and attention_mask is not None
|
747 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
748 |
+
):
|
749 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
750 |
+
|
751 |
+
position_ids = kwargs.get("position_ids", None)
|
752 |
+
if attention_mask is not None and position_ids is None:
|
753 |
+
# create position_ids on the fly for batch generation
|
754 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
755 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
756 |
+
if past_key_values:
|
757 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
758 |
+
|
759 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
760 |
+
if inputs_embeds is not None and past_key_values is None:
|
761 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
762 |
+
else:
|
763 |
+
model_inputs = {"input_ids": input_ids}
|
764 |
+
|
765 |
+
model_inputs.update(
|
766 |
+
{
|
767 |
+
"position_ids": position_ids,
|
768 |
+
"past_key_values": past_key_values,
|
769 |
+
"use_cache": kwargs.get("use_cache"),
|
770 |
+
"attention_mask": attention_mask,
|
771 |
+
}
|
772 |
+
)
|
773 |
+
return model_inputs
|
774 |
+
|
775 |
+
|
776 |
+
class LlavaMetaModel(ABC):
|
777 |
+
"""
|
778 |
+
Define the APIs for building components that are related to image perceiving.
|
779 |
+
This implementation is based on the implementation from the Llave project.
|
780 |
+
"""
|
781 |
+
|
782 |
+
def get_vision_tower(self):
|
783 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
784 |
+
if type(vision_tower) is list:
|
785 |
+
vision_tower = vision_tower[0]
|
786 |
+
return vision_tower
|
787 |
+
|
788 |
+
def build_vision_tower(self, config):
|
789 |
+
self.vision_tower = VisionTower(config.vision_tower_cfg)
|
790 |
+
|
791 |
+
def build_vision_projector(self, config):
|
792 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
793 |
+
|
794 |
+
if projector_type == 'linear':
|
795 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
796 |
+
return
|
797 |
+
|
798 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
799 |
+
if mlp_gelu_match:
|
800 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
801 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
802 |
+
for _ in range(1, mlp_depth):
|
803 |
+
modules.append(nn.GELU())
|
804 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
805 |
+
self.mm_projector = nn.Sequential(*modules)
|
806 |
+
return
|
807 |
+
|
808 |
+
if projector_type == 'identity':
|
809 |
+
self.mm_projector = nn.Identity()
|
810 |
+
return
|
811 |
+
|
812 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
813 |
+
|
814 |
+
|
815 |
+
class ImpModel(PhiPreTrainedModel, LlavaMetaModel):
|
816 |
+
"""Imp model. This implementation is modified from the implementation of Phi-2"""
|
817 |
+
|
818 |
+
|
819 |
+
def __init__(self, config: ImpConfig) -> None:
|
820 |
+
super().__init__(config)
|
821 |
+
self.padding_idx = config.pad_token_id
|
822 |
+
self.vocab_size = config.vocab_size
|
823 |
+
|
824 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
825 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
826 |
+
self.layers = nn.ModuleList(
|
827 |
+
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
828 |
+
)
|
829 |
+
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
830 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
831 |
+
|
832 |
+
self.gradient_checkpointing = False
|
833 |
+
|
834 |
+
if hasattr(config, "mm_vision_tower"):
|
835 |
+
self.build_vision_tower(config)
|
836 |
+
self.build_vision_projector(config)
|
837 |
+
|
838 |
+
self.post_init()
|
839 |
+
|
840 |
+
# def embed_tokens(self, input_ids: torch.LongTensor) -> torch.FloatTensor: #old
|
841 |
+
# return self.embd(input_ids)[0]
|
842 |
+
|
843 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
844 |
+
# return self.embd.wte#old
|
845 |
+
return self.embed_tokens
|
846 |
+
|
847 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
848 |
+
self.embed_tokens = value
|
849 |
+
|
850 |
+
def forward(
|
851 |
+
self,
|
852 |
+
input_ids: torch.LongTensor,
|
853 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
854 |
+
position_ids: Optional[torch.LongTensor] = None,
|
855 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
856 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
857 |
+
use_cache: Optional[bool] = None,
|
858 |
+
output_attentions: Optional[bool] = None,
|
859 |
+
output_hidden_states: Optional[bool] = None,
|
860 |
+
return_dict: Optional[bool] = None,
|
861 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
862 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
863 |
+
output_hidden_states = (
|
864 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
865 |
+
)
|
866 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
867 |
+
|
868 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
869 |
+
|
870 |
+
# retrieve input_ids and inputs_embeds
|
871 |
+
if input_ids is not None and inputs_embeds is not None:
|
872 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
873 |
+
elif input_ids is not None:
|
874 |
+
batch_size, seq_length = input_ids.shape
|
875 |
+
elif inputs_embeds is not None:
|
876 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
877 |
+
else:
|
878 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
879 |
+
|
880 |
+
past_key_values_length = 0
|
881 |
+
|
882 |
+
if self.gradient_checkpointing and self.training:
|
883 |
+
if use_cache:
|
884 |
+
logger.warning_once(
|
885 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
886 |
+
)
|
887 |
+
use_cache = False
|
888 |
+
if use_cache:
|
889 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
890 |
+
if use_legacy_cache:
|
891 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
892 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
893 |
+
|
894 |
+
|
895 |
+
|
896 |
+
if position_ids is None:
|
897 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
898 |
+
position_ids = torch.arange(
|
899 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
900 |
+
)
|
901 |
+
position_ids = position_ids.unsqueeze(0)
|
902 |
+
|
903 |
+
if inputs_embeds is None:
|
904 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
905 |
+
|
906 |
+
inputs_embeds = self.embed_dropout(inputs_embeds)
|
907 |
+
|
908 |
+
if self._use_flash_attention_2:
|
909 |
+
# 2d mask is passed through the layers
|
910 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
911 |
+
else:
|
912 |
+
# 4d mask is passed through the layers
|
913 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
914 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
915 |
+
)
|
916 |
+
hidden_states = inputs_embeds
|
917 |
+
# ok
|
918 |
+
|
919 |
+
# decoder layers
|
920 |
+
all_hidden_states = () if output_hidden_states else None
|
921 |
+
all_self_attns = () if output_attentions else None
|
922 |
+
next_decoder_cache = None
|
923 |
+
|
924 |
+
|
925 |
+
for nums,decoder_layer in enumerate(self.layers):
|
926 |
+
if output_hidden_states:
|
927 |
+
all_hidden_states += (hidden_states,)
|
928 |
+
|
929 |
+
if self.gradient_checkpointing and self.training:
|
930 |
+
layer_outputs = self._gradient_checkpointing_func(
|
931 |
+
decoder_layer.__call__,
|
932 |
+
hidden_states,
|
933 |
+
attention_mask,
|
934 |
+
position_ids,
|
935 |
+
past_key_values,
|
936 |
+
output_attentions,
|
937 |
+
)
|
938 |
+
else:
|
939 |
+
layer_outputs = decoder_layer(
|
940 |
+
hidden_states,
|
941 |
+
attention_mask=attention_mask,
|
942 |
+
position_ids=position_ids,
|
943 |
+
past_key_value=past_key_values,
|
944 |
+
output_attentions=output_attentions,
|
945 |
+
use_cache=use_cache,
|
946 |
+
)
|
947 |
+
hidden_states = layer_outputs[0]
|
948 |
+
|
949 |
+
if use_cache:
|
950 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
951 |
+
if output_attentions:
|
952 |
+
all_self_attns += (layer_outputs[1],)
|
953 |
+
|
954 |
+
|
955 |
+
hidden_states = self.final_layernorm(hidden_states) #final_new_phi
|
956 |
+
|
957 |
+
# add hidden states from the last decoder layer
|
958 |
+
if output_hidden_states:
|
959 |
+
all_hidden_states += (hidden_states,)
|
960 |
+
|
961 |
+
next_cache = None
|
962 |
+
if use_cache:
|
963 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
964 |
+
if not return_dict:
|
965 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
966 |
+
return BaseModelOutputWithPast(
|
967 |
+
last_hidden_state=hidden_states,
|
968 |
+
past_key_values=next_cache,
|
969 |
+
hidden_states=all_hidden_states,
|
970 |
+
attentions=all_self_attns,
|
971 |
+
)
|
972 |
+
|
973 |
+
|
974 |
+
|
975 |
+
class LlavaMetaForCausalLM(ABC):
|
976 |
+
"""This implementation is based on the implementation from the Llave project."""
|
977 |
+
|
978 |
+
def init_constants(self, config):
|
979 |
+
self.IGNORE_INDEX = getattr(config, 'ignore_index', -100)
|
980 |
+
self.IMAGE_TOKEN_INDEX = getattr(config, 'image_token_index', 50296)
|
981 |
+
self.DEFAULT_IMAGE_TOKEN = getattr(config, 'image_token', "<image>")
|
982 |
+
|
983 |
+
@abstractmethod
|
984 |
+
def get_model(self):
|
985 |
+
pass
|
986 |
+
|
987 |
+
def get_vision_tower(self):
|
988 |
+
return self.get_model().get_vision_tower()
|
989 |
+
|
990 |
+
def encode_images(self, images):
|
991 |
+
image_features = self.get_model().get_vision_tower()(images)
|
992 |
+
image_features = self.get_model().mm_projector(image_features)
|
993 |
+
return image_features
|
994 |
+
|
995 |
+
def prepare_inputs_labels_for_multimodal(
|
996 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
997 |
+
):
|
998 |
+
vision_tower = self.get_vision_tower()
|
999 |
+
if past_key_values is not None:
|
1000 |
+
target_shape = past_key_values[0][0].shape[2] + 1
|
1001 |
+
attention_mask = torch.ones(
|
1002 |
+
(attention_mask.shape[0], target_shape),
|
1003 |
+
dtype=attention_mask.dtype,
|
1004 |
+
device=attention_mask.device
|
1005 |
+
)
|
1006 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1007 |
+
# print(input_ids[:, -1:].item())
|
1008 |
+
return input_ids[:, -1:], position_ids, attention_mask, past_key_values, None, labels
|
1009 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1010 |
+
# if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
1011 |
+
# target_shape = past_key_values.seqlen_offset + 1
|
1012 |
+
# attention_mask = torch.cat((attention_mask, torch.ones(
|
1013 |
+
# (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
1014 |
+
# dtype=attention_mask.dtype,
|
1015 |
+
# device=attention_mask.device
|
1016 |
+
# )), dim=1)
|
1017 |
+
# position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1018 |
+
return input_ids, None, None, past_key_values, None, None
|
1019 |
+
# return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1020 |
+
|
1021 |
+
# if vision_tower is None or images is None or past_key_values.seqlen_offset != 0:
|
1022 |
+
# if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1023 |
+
# if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
1024 |
+
# target_shape = past_key_values.seqlen_offset + 1
|
1025 |
+
# # inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...]
|
1026 |
+
# attention_mask = torch.cat((attention_mask, torch.ones(
|
1027 |
+
# (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
1028 |
+
# dtype=attention_mask.dtype,
|
1029 |
+
# device=attention_mask.device
|
1030 |
+
# )), dim=1)
|
1031 |
+
# position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1032 |
+
# return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1033 |
+
|
1034 |
+
if type(images) is list or images.ndim == 5:
|
1035 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
1036 |
+
concat_images = concat_images.to(device=self.device, dtype=vision_tower.dtype)
|
1037 |
+
image_features = self.encode_images(concat_images)
|
1038 |
+
split_sizes = [image.shape[0] for image in images]
|
1039 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
1040 |
+
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
|
1041 |
+
else:
|
1042 |
+
images = images.to(device=self.device, dtype=vision_tower.dtype)
|
1043 |
+
image_features = self.encode_images(images).to(self.device)
|
1044 |
+
|
1045 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1046 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
1047 |
+
raise NotImplementedError
|
1048 |
+
|
1049 |
+
# Let's just add dummy tensors if they do not exist,
|
1050 |
+
# it is a headache to deal with None all the time.
|
1051 |
+
# But it is not ideal, and if you have a better idea,
|
1052 |
+
# please open an issue / submit a PR, thanks.
|
1053 |
+
_labels = labels
|
1054 |
+
_position_ids = position_ids
|
1055 |
+
_attention_mask = attention_mask
|
1056 |
+
if attention_mask is None:
|
1057 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1058 |
+
else:
|
1059 |
+
attention_mask = attention_mask.bool()
|
1060 |
+
if position_ids is None:
|
1061 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
1062 |
+
if labels is None:
|
1063 |
+
labels = torch.full_like(input_ids, self.IGNORE_INDEX)
|
1064 |
+
|
1065 |
+
# remove the padding using attention_mask -- TODO: double check
|
1066 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
1067 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
1068 |
+
|
1069 |
+
new_input_embeds = []
|
1070 |
+
new_labels = []
|
1071 |
+
cur_image_idx = 0
|
1072 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1073 |
+
num_images = (cur_input_ids == self.IMAGE_TOKEN_INDEX).sum()
|
1074 |
+
if num_images == 0:
|
1075 |
+
cur_image_features = image_features[cur_image_idx]
|
1076 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
1077 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
1078 |
+
new_input_embeds.append(cur_input_embeds)
|
1079 |
+
new_labels.append(labels[batch_idx])
|
1080 |
+
cur_image_idx += 1
|
1081 |
+
continue
|
1082 |
+
|
1083 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == self.IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
1084 |
+
cur_input_ids_noim = []
|
1085 |
+
cur_labels = labels[batch_idx]
|
1086 |
+
cur_labels_noim = []
|
1087 |
+
for i in range(len(image_token_indices) - 1):
|
1088 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
1089 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
1090 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1091 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
1092 |
+
# print(cur_input_embeds.shape)
|
1093 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1094 |
+
cur_new_input_embeds = []
|
1095 |
+
cur_new_labels = []
|
1096 |
+
|
1097 |
+
for i in range(num_images + 1):
|
1098 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1099 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1100 |
+
if i < num_images:
|
1101 |
+
cur_image_features = image_features[cur_image_idx]
|
1102 |
+
cur_image_idx += 1
|
1103 |
+
cur_new_input_embeds.append(cur_image_features)
|
1104 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), self.IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
1105 |
+
|
1106 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1107 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1108 |
+
|
1109 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1110 |
+
new_labels.append(cur_new_labels)
|
1111 |
+
|
1112 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1113 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
1114 |
+
if tokenizer_model_max_length is not None:
|
1115 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
1116 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1117 |
+
|
1118 |
+
# Combine them
|
1119 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1120 |
+
batch_size = len(new_input_embeds)
|
1121 |
+
|
1122 |
+
new_input_embeds_padded = []
|
1123 |
+
new_labels_padded = torch.full((batch_size, max_len), self.IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
1124 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
1125 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
1126 |
+
|
1127 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
1128 |
+
cur_len = cur_new_embed.shape[0]
|
1129 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
1130 |
+
new_input_embeds_padded.append(torch.cat((
|
1131 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
1132 |
+
cur_new_embed
|
1133 |
+
), dim=0))
|
1134 |
+
if cur_len > 0:
|
1135 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1136 |
+
attention_mask[i, -cur_len:] = True
|
1137 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1138 |
+
else:
|
1139 |
+
new_input_embeds_padded.append(torch.cat((
|
1140 |
+
cur_new_embed,
|
1141 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
1142 |
+
), dim=0))
|
1143 |
+
if cur_len > 0:
|
1144 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1145 |
+
attention_mask[i, :cur_len] = True
|
1146 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1147 |
+
|
1148 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1149 |
+
|
1150 |
+
if _labels is None:
|
1151 |
+
new_labels = None
|
1152 |
+
else:
|
1153 |
+
new_labels = new_labels_padded
|
1154 |
+
|
1155 |
+
if _attention_mask is None:
|
1156 |
+
attention_mask = None
|
1157 |
+
else:
|
1158 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1159 |
+
|
1160 |
+
if _position_ids is None:
|
1161 |
+
position_ids = None
|
1162 |
+
|
1163 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1164 |
+
#return input_ids, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1165 |
+
|
1166 |
+
|
1167 |
+
class ImpForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM):
|
1168 |
+
"""Imp for Causal Language Modeling."""
|
1169 |
+
|
1170 |
+
# _keys_to_ignore_on_load_missing = [""]
|
1171 |
+
# _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
1172 |
+
config_class = ImpConfig
|
1173 |
+
|
1174 |
+
def __init__(self, config: ImpConfig) -> None:
|
1175 |
+
super().__init__(config)
|
1176 |
+
|
1177 |
+
self.model = ImpModel(config)
|
1178 |
+
self.vocab_size = config.vocab_size
|
1179 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
1180 |
+
|
1181 |
+
self.post_init()
|
1182 |
+
self.init_constants(config)
|
1183 |
+
|
1184 |
+
def get_input_embeddings(self):
|
1185 |
+
return self.model.embed_tokens
|
1186 |
+
|
1187 |
+
def set_input_embeddings(self, value):
|
1188 |
+
self.model.embed_tokens = value
|
1189 |
+
|
1190 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1191 |
+
return self.lm_head
|
1192 |
+
|
1193 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
1194 |
+
self.lm_head = new_embeddings
|
1195 |
+
|
1196 |
+
def get_model(self):
|
1197 |
+
return self.model
|
1198 |
+
|
1199 |
+
def get_decoder(self):
|
1200 |
+
return self.model
|
1201 |
+
|
1202 |
+
def set_decoder(self, decoder):#会被用?
|
1203 |
+
self.model = decoder
|
1204 |
+
|
1205 |
+
def image_preprocess(self, images):
|
1206 |
+
return self.get_vision_tower().image_processor(images)['pixel_values']
|
1207 |
+
|
1208 |
+
def forward(
|
1209 |
+
self,
|
1210 |
+
input_ids: torch.LongTensor = None,
|
1211 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1212 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1213 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1214 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1215 |
+
labels: Optional[torch.LongTensor] = None,
|
1216 |
+
use_cache: Optional[bool] = None,
|
1217 |
+
output_attentions: Optional[bool] = None,
|
1218 |
+
output_hidden_states: Optional[bool] = None,
|
1219 |
+
images: Optional[torch.FloatTensor] = None,
|
1220 |
+
return_dict: Optional[bool] = None,
|
1221 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1222 |
+
|
1223 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1224 |
+
output_hidden_states = (
|
1225 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1226 |
+
)
|
1227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1228 |
+
|
1229 |
+
if inputs_embeds is None:
|
1230 |
+
(
|
1231 |
+
input_ids,
|
1232 |
+
position_ids,
|
1233 |
+
attention_mask,
|
1234 |
+
past_key_values,
|
1235 |
+
inputs_embeds,
|
1236 |
+
labels
|
1237 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1238 |
+
input_ids,
|
1239 |
+
position_ids,
|
1240 |
+
attention_mask,
|
1241 |
+
past_key_values,
|
1242 |
+
labels,
|
1243 |
+
images
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
outputs = self.model(
|
1247 |
+
input_ids=input_ids,
|
1248 |
+
past_key_values=past_key_values,
|
1249 |
+
attention_mask=attention_mask,
|
1250 |
+
position_ids=position_ids,
|
1251 |
+
inputs_embeds=inputs_embeds,
|
1252 |
+
use_cache=use_cache,
|
1253 |
+
output_attentions=output_attentions,
|
1254 |
+
output_hidden_states=output_hidden_states,
|
1255 |
+
return_dict=return_dict
|
1256 |
+
)
|
1257 |
+
hidden_states = outputs[0]
|
1258 |
+
logits = self.lm_head(hidden_states)
|
1259 |
+
logits = logits.float()
|
1260 |
+
|
1261 |
+
loss = None
|
1262 |
+
if labels is not None:
|
1263 |
+
# Shift so that tokens < n predict n
|
1264 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1265 |
+
shift_labels = labels[..., 1:].contiguous()
|
1266 |
+
# Flatten the tokens
|
1267 |
+
loss_fct = CrossEntropyLoss()
|
1268 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1269 |
+
shift_labels = shift_labels.view(-1)
|
1270 |
+
# Enable model parallelism
|
1271 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1272 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1273 |
+
if not return_dict:
|
1274 |
+
loss = None
|
1275 |
+
output = (logits,) + outputs[1:]
|
1276 |
+
return (loss,) + output if loss is not None else output
|
1277 |
+
|
1278 |
+
return CausalLMOutputWithPast(
|
1279 |
+
loss=loss,
|
1280 |
+
logits=logits,
|
1281 |
+
past_key_values=outputs.past_key_values,
|
1282 |
+
hidden_states=outputs.hidden_states,
|
1283 |
+
attentions=outputs.attentions,
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1287 |
+
images = kwargs.pop("images", None)
|
1288 |
+
_inputs = super().prepare_inputs_for_generation(
|
1289 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
1290 |
+
)
|
1291 |
+
if images is not None:
|
1292 |
+
_inputs['images'] = images
|
1293 |
+
return _inputs
|
1294 |
+
|
1295 |
+
|
1296 |
+
AutoConfig.register("imp", ImpConfig)
|
1297 |
+
AutoModelForCausalLM.register(ImpConfig, ImpForCausalLM)
|
smash_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"pruning_ratio": 0.0,
|
7 |
+
"factorizers": "None",
|
8 |
+
"quantizers": "['llm-int8']",
|
9 |
+
"weight_quantization_bits": 4,
|
10 |
+
"output_deviation": 0.005,
|
11 |
+
"compilers": "None",
|
12 |
+
"static_batch": true,
|
13 |
+
"static_shape": true,
|
14 |
+
"controlnet": "None",
|
15 |
+
"unet_dim": 4,
|
16 |
+
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/models1ogh7zr5",
|
18 |
+
"batch_size": 1,
|
19 |
+
"model_name": "MILVLG/imp-v1-3b",
|
20 |
+
"task": "text_text_generation",
|
21 |
+
"max_batch_size": 1,
|
22 |
+
"qtype_weight": "torch.qint8",
|
23 |
+
"qtype_activation": "torch.quint8",
|
24 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
25 |
+
"qscheme": "torch.per_tensor_symmetric",
|
26 |
+
"qconfig": "x86",
|
27 |
+
"group_size": 128,
|
28 |
+
"damp_percent": 0.1,
|
29 |
+
"save_load_fn": "bitsandbytes"
|
30 |
+
}
|
31 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"50256": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"50257": {
|
14 |
+
"content": " ",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": false
|
20 |
+
},
|
21 |
+
"50258": {
|
22 |
+
"content": " ",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"50259": {
|
30 |
+
"content": " ",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": false
|
36 |
+
},
|
37 |
+
"50260": {
|
38 |
+
"content": " ",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"50261": {
|
46 |
+
"content": " ",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": true,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"50262": {
|
54 |
+
"content": " ",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": true,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"50263": {
|
62 |
+
"content": " ",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": true,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"50264": {
|
70 |
+
"content": " ",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": true,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"50265": {
|
78 |
+
"content": " ",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": true,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"50266": {
|
86 |
+
"content": " ",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": true,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"50267": {
|
94 |
+
"content": " ",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": true,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"50268": {
|
102 |
+
"content": " ",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": true,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"50269": {
|
110 |
+
"content": " ",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": true,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"50270": {
|
118 |
+
"content": " ",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": true,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"50271": {
|
126 |
+
"content": " ",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": true,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"50272": {
|
134 |
+
"content": " ",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": true,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"50273": {
|
142 |
+
"content": " ",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": true,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"50274": {
|
150 |
+
"content": " ",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": true,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"50275": {
|
158 |
+
"content": " ",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": true,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"50276": {
|
166 |
+
"content": " ",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": true,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"50277": {
|
174 |
+
"content": " ",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": true,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"50278": {
|
182 |
+
"content": " ",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": true,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"50279": {
|
190 |
+
"content": " ",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": true,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"50280": {
|
198 |
+
"content": " ",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": true,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"50281": {
|
206 |
+
"content": " ",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": true,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"50282": {
|
214 |
+
"content": " ",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": true,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"50283": {
|
222 |
+
"content": " ",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": true,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"50284": {
|
230 |
+
"content": " ",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": true,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"50285": {
|
238 |
+
"content": " ",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": true,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"50286": {
|
246 |
+
"content": " ",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": true,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"50287": {
|
254 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": true,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"50288": {
|
262 |
+
"content": "\t\t\t\t\t\t\t\t",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": true,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"50289": {
|
270 |
+
"content": "\t\t\t\t\t\t\t",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": true,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"50290": {
|
278 |
+
"content": "\t\t\t\t\t\t",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": true,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"50291": {
|
286 |
+
"content": "\t\t\t\t\t",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": true,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"50292": {
|
294 |
+
"content": "\t\t\t\t",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": true,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"50293": {
|
302 |
+
"content": "\t\t\t",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": true,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"50294": {
|
310 |
+
"content": "\t\t",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": true,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"50295": {
|
318 |
+
"content": "</s>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"50296": {
|
326 |
+
"content": "<image>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
}
|
333 |
+
},
|
334 |
+
"bos_token": "<|endoftext|>",
|
335 |
+
"clean_up_tokenization_spaces": true,
|
336 |
+
"eos_token": "<|endoftext|>",
|
337 |
+
"errors": "replace",
|
338 |
+
"legacy": false,
|
339 |
+
"model_max_length": 3072,
|
340 |
+
"pad_token": null,
|
341 |
+
"return_token_type_ids": false,
|
342 |
+
"tokenizer_class": "CodeGenTokenizer",
|
343 |
+
"unk_token": "<|endoftext|>"
|
344 |
+
}
|
vision_encoder.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) MILVLG team.
|
2 |
+
# Licensed under the Apache 2.0 license.
|
3 |
+
#
|
4 |
+
# Some code here is copied from the project Phi-2 (https://huggingface.co/microsoft/phi-2),
|
5 |
+
# SigLIP@transformers==4.37.0.dev0 (https://huggingface.co/google/siglip-so400m-patch14-384),
|
6 |
+
# and Llava (https://github.com/haotian-liu/LLaVA), and modified by
|
7 |
+
# Zhenwei Shao (shaozw@hdu.edu.cn) @ MILVLG. We thank them for their great works.
|
8 |
+
# And their original licenses and copyright should be inherited (see the statements
|
9 |
+
# in `configuration_imp.py` for more details).
|
10 |
+
|
11 |
+
|
12 |
+
from typing import Any, Optional, Tuple, Union, List, Dict
|
13 |
+
from dataclasses import dataclass
|
14 |
+
import math
|
15 |
+
import warnings
|
16 |
+
from functools import partial, reduce
|
17 |
+
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from PIL import Image
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.image_processing_utils import BatchFeature
|
26 |
+
from transformers.image_transforms import (
|
27 |
+
convert_to_rgb,
|
28 |
+
normalize,
|
29 |
+
rescale,
|
30 |
+
resize,
|
31 |
+
to_channel_dimension_format,
|
32 |
+
)
|
33 |
+
from transformers.image_utils import (
|
34 |
+
ChannelDimension,
|
35 |
+
PILImageResampling,
|
36 |
+
to_numpy_array,
|
37 |
+
)
|
38 |
+
from transformers.activations import ACT2FN
|
39 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.utils import ModelOutput
|
42 |
+
|
43 |
+
from .configuration_imp import SiglipVisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
# ============================================================================
|
47 |
+
# A simple image preprocessor for SigLIP models.
|
48 |
+
# ============================================================================
|
49 |
+
|
50 |
+
def simple_image_processor(
|
51 |
+
images,
|
52 |
+
image_mean=(0.5, 0.5, 0.5),
|
53 |
+
image_std=(0.5, 0.5, 0.5),
|
54 |
+
size=(384, 384),
|
55 |
+
resample=PILImageResampling.BICUBIC,
|
56 |
+
rescale_factor=1 / 255,
|
57 |
+
data_format=ChannelDimension.FIRST,
|
58 |
+
return_tensors="pt"
|
59 |
+
):
|
60 |
+
|
61 |
+
if isinstance(images, Image.Image):
|
62 |
+
images = [images]
|
63 |
+
else:
|
64 |
+
assert isinstance(images, list)
|
65 |
+
|
66 |
+
transforms = [
|
67 |
+
convert_to_rgb,
|
68 |
+
to_numpy_array,
|
69 |
+
partial(resize, size=size, resample=resample, data_format=data_format),
|
70 |
+
partial(rescale, scale=rescale_factor, data_format=data_format),
|
71 |
+
partial(normalize, mean=image_mean, std=image_std, data_format=data_format),
|
72 |
+
partial(to_channel_dimension_format, channel_dim=data_format, input_channel_dim=data_format),
|
73 |
+
]
|
74 |
+
|
75 |
+
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
76 |
+
data = {"pixel_values": images}
|
77 |
+
|
78 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
79 |
+
|
80 |
+
# ============================================================================
|
81 |
+
# Definitions for SigLIP models.
|
82 |
+
# ============================================================================
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
86 |
+
class SiglipVisionModelOutput(ModelOutput):
|
87 |
+
"""
|
88 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
92 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
93 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
94 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
95 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
97 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
98 |
+
|
99 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
100 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
101 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
102 |
+
sequence_length)`.
|
103 |
+
|
104 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
105 |
+
heads.
|
106 |
+
"""
|
107 |
+
|
108 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
109 |
+
last_hidden_state: torch.FloatTensor = None
|
110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
111 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
112 |
+
|
113 |
+
|
114 |
+
class SiglipVisionEmbeddings(nn.Module):
|
115 |
+
def __init__(self, config: SiglipVisionConfig):
|
116 |
+
super().__init__()
|
117 |
+
self.config = config
|
118 |
+
self.embed_dim = config.hidden_size
|
119 |
+
self.image_size = config.image_size
|
120 |
+
self.patch_size = config.patch_size
|
121 |
+
|
122 |
+
self.patch_embedding = nn.Conv2d(
|
123 |
+
in_channels=config.num_channels,
|
124 |
+
out_channels=self.embed_dim,
|
125 |
+
kernel_size=self.patch_size,
|
126 |
+
stride=self.patch_size,
|
127 |
+
padding="valid",
|
128 |
+
)
|
129 |
+
|
130 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
131 |
+
self.num_positions = self.num_patches
|
132 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
133 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
134 |
+
|
135 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
136 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
137 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
138 |
+
|
139 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
140 |
+
return embeddings
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
class SiglipAttention(nn.Module):
|
145 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
146 |
+
|
147 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
148 |
+
def __init__(self, config):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
self.embed_dim = config.hidden_size
|
152 |
+
self.num_heads = config.num_attention_heads
|
153 |
+
self.head_dim = self.embed_dim // self.num_heads
|
154 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
155 |
+
raise ValueError(
|
156 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
157 |
+
f" {self.num_heads})."
|
158 |
+
)
|
159 |
+
self.scale = self.head_dim**-0.5
|
160 |
+
self.dropout = config.attention_dropout
|
161 |
+
|
162 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
163 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
164 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
165 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
hidden_states: torch.Tensor,
|
170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
171 |
+
output_attentions: Optional[bool] = False,
|
172 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
173 |
+
"""Input shape: Batch x Time x Channel"""
|
174 |
+
|
175 |
+
batch_size, q_len, _ = hidden_states.size()
|
176 |
+
|
177 |
+
query_states = self.q_proj(hidden_states)
|
178 |
+
key_states = self.k_proj(hidden_states)
|
179 |
+
value_states = self.v_proj(hidden_states)
|
180 |
+
|
181 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
183 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
184 |
+
|
185 |
+
k_v_seq_len = key_states.shape[-2]
|
186 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
187 |
+
|
188 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
189 |
+
raise ValueError(
|
190 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
191 |
+
f" {attn_weights.size()}"
|
192 |
+
)
|
193 |
+
|
194 |
+
if attention_mask is not None:
|
195 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
196 |
+
raise ValueError(
|
197 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
198 |
+
)
|
199 |
+
attn_weights = attn_weights + attention_mask
|
200 |
+
|
201 |
+
# upcast attention to fp32
|
202 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
203 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
204 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
205 |
+
|
206 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
207 |
+
raise ValueError(
|
208 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
209 |
+
f" {attn_output.size()}"
|
210 |
+
)
|
211 |
+
|
212 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
213 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
214 |
+
|
215 |
+
attn_output = self.out_proj(attn_output)
|
216 |
+
|
217 |
+
return attn_output, attn_weights
|
218 |
+
|
219 |
+
|
220 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
221 |
+
class SiglipMLP(nn.Module):
|
222 |
+
def __init__(self, config):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
226 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
227 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
228 |
+
|
229 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
230 |
+
hidden_states = self.fc1(hidden_states)
|
231 |
+
hidden_states = self.activation_fn(hidden_states)
|
232 |
+
hidden_states = self.fc2(hidden_states)
|
233 |
+
return hidden_states
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
237 |
+
class SiglipEncoderLayer(nn.Module):
|
238 |
+
def __init__(self, config: SiglipVisionConfig):
|
239 |
+
super().__init__()
|
240 |
+
self.embed_dim = config.hidden_size
|
241 |
+
self.self_attn = SiglipAttention(config)
|
242 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
243 |
+
self.mlp = SiglipMLP(config)
|
244 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
245 |
+
|
246 |
+
# Ignore copy
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states: torch.Tensor,
|
250 |
+
attention_mask: torch.Tensor,
|
251 |
+
output_attentions: Optional[bool] = False,
|
252 |
+
) -> Tuple[torch.FloatTensor]:
|
253 |
+
"""
|
254 |
+
Args:
|
255 |
+
hidden_states (`torch.FloatTensor`):
|
256 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
257 |
+
attention_mask (`torch.FloatTensor`):
|
258 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
259 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
260 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
261 |
+
returned tensors for more detail.
|
262 |
+
"""
|
263 |
+
residual = hidden_states
|
264 |
+
|
265 |
+
hidden_states = self.layer_norm1(hidden_states)
|
266 |
+
hidden_states, attn_weights = self.self_attn(
|
267 |
+
hidden_states=hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
output_attentions=output_attentions,
|
270 |
+
)
|
271 |
+
hidden_states = residual + hidden_states
|
272 |
+
|
273 |
+
residual = hidden_states
|
274 |
+
hidden_states = self.layer_norm2(hidden_states)
|
275 |
+
hidden_states = self.mlp(hidden_states)
|
276 |
+
hidden_states = residual + hidden_states
|
277 |
+
|
278 |
+
outputs = (hidden_states,)
|
279 |
+
|
280 |
+
if output_attentions:
|
281 |
+
outputs += (attn_weights,)
|
282 |
+
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
|
286 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
287 |
+
"""
|
288 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
289 |
+
models.
|
290 |
+
"""
|
291 |
+
|
292 |
+
config_class = SiglipVisionConfig
|
293 |
+
base_model_prefix = "siglip"
|
294 |
+
supports_gradient_checkpointing = True
|
295 |
+
|
296 |
+
def _init_weights(self, module):
|
297 |
+
"""Initialize the weights"""
|
298 |
+
pass
|
299 |
+
|
300 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
301 |
+
class SiglipEncoder(nn.Module):
|
302 |
+
"""
|
303 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
304 |
+
[`SiglipEncoderLayer`].
|
305 |
+
|
306 |
+
Args:
|
307 |
+
config: SiglipVisionConfig
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self, config: SiglipVisionConfig):
|
311 |
+
super().__init__()
|
312 |
+
self.config = config
|
313 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
314 |
+
self.gradient_checkpointing = False
|
315 |
+
|
316 |
+
# Ignore copy
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
321 |
+
output_attentions: Optional[bool] = None,
|
322 |
+
output_hidden_states: Optional[bool] = None,
|
323 |
+
return_dict: Optional[bool] = None,
|
324 |
+
) -> Union[Tuple, BaseModelOutput]:
|
325 |
+
r"""
|
326 |
+
Args:
|
327 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
328 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
329 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
330 |
+
than the model's internal embedding lookup matrix.
|
331 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
332 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
333 |
+
|
334 |
+
- 1 for tokens that are **not masked**,
|
335 |
+
- 0 for tokens that are **masked**.
|
336 |
+
|
337 |
+
[What are attention masks?](../glossary#attention-mask)
|
338 |
+
output_attentions (`bool`, *optional*):
|
339 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
340 |
+
returned tensors for more detail.
|
341 |
+
output_hidden_states (`bool`, *optional*):
|
342 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
343 |
+
for more detail.
|
344 |
+
return_dict (`bool`, *optional*):
|
345 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
346 |
+
"""
|
347 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
348 |
+
output_hidden_states = (
|
349 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
350 |
+
)
|
351 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
352 |
+
|
353 |
+
encoder_states = () if output_hidden_states else None
|
354 |
+
all_attentions = () if output_attentions else None
|
355 |
+
|
356 |
+
hidden_states = inputs_embeds
|
357 |
+
for encoder_layer in self.layers:
|
358 |
+
if output_hidden_states:
|
359 |
+
encoder_states = encoder_states + (hidden_states,)
|
360 |
+
if self.gradient_checkpointing and self.training:
|
361 |
+
layer_outputs = self._gradient_checkpointing_func(
|
362 |
+
encoder_layer.__call__,
|
363 |
+
hidden_states,
|
364 |
+
attention_mask,
|
365 |
+
output_attentions,
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
layer_outputs = encoder_layer(
|
369 |
+
hidden_states,
|
370 |
+
attention_mask,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
)
|
373 |
+
|
374 |
+
hidden_states = layer_outputs[0]
|
375 |
+
|
376 |
+
if output_attentions:
|
377 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
378 |
+
|
379 |
+
if output_hidden_states:
|
380 |
+
encoder_states = encoder_states + (hidden_states,)
|
381 |
+
|
382 |
+
if not return_dict:
|
383 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
384 |
+
return BaseModelOutput(
|
385 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
class SiglipVisionTransformer(nn.Module):
|
390 |
+
def __init__(self, config: SiglipVisionConfig):
|
391 |
+
super().__init__()
|
392 |
+
self.config = config
|
393 |
+
embed_dim = config.hidden_size
|
394 |
+
|
395 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
396 |
+
self.encoder = SiglipEncoder(config)
|
397 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
398 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
pixel_values,
|
403 |
+
output_attentions: Optional[bool] = None,
|
404 |
+
output_hidden_states: Optional[bool] = None,
|
405 |
+
return_dict: Optional[bool] = None,
|
406 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
407 |
+
r"""
|
408 |
+
Returns:
|
409 |
+
|
410 |
+
"""
|
411 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
412 |
+
output_hidden_states = (
|
413 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
414 |
+
)
|
415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
416 |
+
|
417 |
+
hidden_states = self.embeddings(pixel_values)
|
418 |
+
|
419 |
+
encoder_outputs = self.encoder(
|
420 |
+
inputs_embeds=hidden_states,
|
421 |
+
output_attentions=output_attentions,
|
422 |
+
output_hidden_states=output_hidden_states,
|
423 |
+
return_dict=return_dict,
|
424 |
+
)
|
425 |
+
|
426 |
+
last_hidden_state = encoder_outputs[0]
|
427 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
428 |
+
|
429 |
+
pooled_output = self.head(last_hidden_state)
|
430 |
+
|
431 |
+
if not return_dict:
|
432 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
433 |
+
|
434 |
+
return BaseModelOutputWithPooling(
|
435 |
+
last_hidden_state=last_hidden_state,
|
436 |
+
pooler_output=pooled_output,
|
437 |
+
hidden_states=encoder_outputs.hidden_states,
|
438 |
+
attentions=encoder_outputs.attentions,
|
439 |
+
)
|
440 |
+
|
441 |
+
|
442 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
443 |
+
"""Multihead Attention Pooling."""
|
444 |
+
|
445 |
+
def __init__(self, config: SiglipVisionConfig):
|
446 |
+
super().__init__()
|
447 |
+
|
448 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
449 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
450 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
451 |
+
self.mlp = SiglipMLP(config)
|
452 |
+
|
453 |
+
def forward(self, hidden_state):
|
454 |
+
batch_size = hidden_state.shape[0]
|
455 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
456 |
+
|
457 |
+
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
458 |
+
|
459 |
+
residual = hidden_state
|
460 |
+
hidden_state = self.layernorm(hidden_state)
|
461 |
+
hidden_state = residual + self.mlp(hidden_state)
|
462 |
+
|
463 |
+
return hidden_state[:, 0]
|
464 |
+
|
465 |
+
|
466 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
467 |
+
config_class = SiglipVisionConfig
|
468 |
+
main_input_name = "pixel_values"
|
469 |
+
_no_split_modules = ["SiglipEncoderLayer"]
|
470 |
+
|
471 |
+
def __init__(self, config: SiglipVisionConfig):
|
472 |
+
super().__init__(config)
|
473 |
+
|
474 |
+
self.vision_model = SiglipVisionTransformer(config)
|
475 |
+
|
476 |
+
# Initialize weights and apply final processing
|
477 |
+
self.post_init()
|
478 |
+
|
479 |
+
def get_input_embeddings(self) -> nn.Module:
|
480 |
+
return self.vision_model.embeddings.patch_embedding
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
pixel_values,
|
485 |
+
output_attentions: Optional[bool] = None,
|
486 |
+
output_hidden_states: Optional[bool] = None,
|
487 |
+
return_dict: Optional[bool] = None,
|
488 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
489 |
+
r"""
|
490 |
+
Returns:
|
491 |
+
|
492 |
+
Examples:
|
493 |
+
|
494 |
+
```python
|
495 |
+
>>> from PIL import Image
|
496 |
+
>>> import requests
|
497 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
498 |
+
|
499 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
500 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
501 |
+
|
502 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
503 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
504 |
+
|
505 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
506 |
+
|
507 |
+
>>> outputs = model(**inputs)
|
508 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
509 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
510 |
+
```"""
|
511 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
512 |
+
|
513 |
+
return self.vision_model(
|
514 |
+
pixel_values=pixel_values,
|
515 |
+
output_attentions=output_attentions,
|
516 |
+
output_hidden_states=output_hidden_states,
|
517 |
+
return_dict=return_dict,
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
# ============================================================================
|
522 |
+
# VisionTower module for Imp
|
523 |
+
# ============================================================================
|
524 |
+
|
525 |
+
class VisionTower(nn.Module):
|
526 |
+
def __init__(self, vision_tower_cfg, delay_load=False):
|
527 |
+
super().__init__()
|
528 |
+
|
529 |
+
self.is_loaded = False
|
530 |
+
|
531 |
+
self.config = vision_tower_cfg
|
532 |
+
self.vision_tower_name = vision_tower_cfg.mm_vision_tower
|
533 |
+
self.select_layer = vision_tower_cfg.mm_vision_select_layer
|
534 |
+
# self.select_feature = getattr(vision_tower_cfg, 'mm_vision_select_feature', 'patch')
|
535 |
+
|
536 |
+
self.image_processor = simple_image_processor
|
537 |
+
|
538 |
+
if not delay_load:
|
539 |
+
self.load_model()
|
540 |
+
else:
|
541 |
+
raise NotImplementedError("delay load is not implemented yet.")
|
542 |
+
|
543 |
+
def load_model(self):
|
544 |
+
if self.is_loaded:
|
545 |
+
return
|
546 |
+
|
547 |
+
# "google/siglip-so400m-patch14-384"
|
548 |
+
# self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
549 |
+
self.vision_tower = SiglipVisionModel(self.config)
|
550 |
+
del self.vision_tower.vision_model.encoder.layers[(self.select_layer + 1):]
|
551 |
+
self.vision_tower.vision_model.head = nn.Identity()
|
552 |
+
self.vision_tower.vision_model.post_layernorm=nn.Identity()
|
553 |
+
self.vision_tower.requires_grad_(False)
|
554 |
+
self.vision_tower.eval()
|
555 |
+
|
556 |
+
self.is_loaded = True
|
557 |
+
|
558 |
+
@torch.no_grad()
|
559 |
+
def forward(self, images):
|
560 |
+
if type(images) is list:
|
561 |
+
image_features = []
|
562 |
+
for image in images:
|
563 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
564 |
+
image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
|
565 |
+
assert image_features.shape[-2] == 729
|
566 |
+
image_features.append(image_feature)
|
567 |
+
else:
|
568 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
569 |
+
image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
|
570 |
+
assert image_features.shape[-2] == 729
|
571 |
+
|
572 |
+
return image_features
|
573 |
+
|
574 |
+
@property
|
575 |
+
def dummy_feature(self):
|
576 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
577 |
+
|
578 |
+
@property
|
579 |
+
def dtype(self):
|
580 |
+
for p in self.vision_tower.parameters():
|
581 |
+
return p.dtype
|
582 |
+
|
583 |
+
@property
|
584 |
+
def device(self):
|
585 |
+
for p in self.vision_tower.parameters():
|
586 |
+
return p.device
|
587 |
+
|
588 |
+
@property
|
589 |
+
def hidden_size(self):
|
590 |
+
return self.config.hidden_size
|
591 |
+
|
592 |
+
@property
|
593 |
+
def num_patches(self):
|
594 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|