File size: 15,132 Bytes
2a69497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention"""


import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.cuda.amp import autocast
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer

from transformers.utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel
from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY, MULTI_HEAD



class GPT2MQAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False, layer_idx=None):
        super().__init__()
        assert config.attention_head_type == MULTI_QUERY

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e4))

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights
        if is_cross_attention:
            raise NotImplementedError("Cross-attention not implemented for MQA")
        self.is_cross_attention = is_cross_attention

        # Layer-wise attention scaling, reordering, and upcasting
        self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
        self.layer_idx = layer_idx
        self.reorder_and_upcast_attn = config.reorder_and_upcast_attn

        if self.is_cross_attention:
            self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
            self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
        else:
            # self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
            self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
            # Keys and values are shared across heads
            self.kv_attn = Conv1D(2 * self.head_dim, self.embed_dim)
        self.c_proj = Conv1D(self.embed_dim, self.embed_dim)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
        index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])

        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)

        # Update hyper params
        self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
        self.num_heads = self.num_heads - len(heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # query: (b, num_heads * sq, head_dim)
        # key: (b, head_dim, sk)
        # value: (b, sk, head_dim)
        batch_size = query.size(0)
        query_length = query.size(1) // self.num_heads
        key_length = key.size(2)
        # (b, num_heads * sq, head_dim) x (b, head_dim, sk) -> (b, num_heads * sq, sk)
        attn_weights = torch.bmm(query, key)
        # -> (b, num_heads, sq, sk)
        attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length)

        if self.scale_attn_weights:
            attn_weights = attn_weights / torch.tensor(
                value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
            )

        # Layer-wise attention scaling
        if self.scale_attn_by_inverse_layer_idx:
            attn_weights = attn_weights / float(self.layer_idx + 1)

        if not self.is_cross_attention:
            # if only "normal" attention layer implements causal mask
            causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
            mask_value = torch.finfo(attn_weights.dtype).min
            # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
            # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
            mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
            attn_weights = torch.where(causal_mask, attn_weights, mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        # (b, num_heads, sq, sk) -> (b, num_heads * sq, sk)
        _attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length)
        # (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim)
        attn_output = torch.bmm(_attn_weights, value)
        attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)

        return attn_output, attn_weights

    def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
        # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
        bsz, num_heads, q_seq_len, dk = query.size()
        _, _, k_seq_len, _ = key.size()

        # Preallocate attn_weights for `baddbmm`
        attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)

        # Compute Scale Factor
        scale_factor = 1.0
        if self.scale_attn_weights:
            scale_factor /= float(value.size(-1)) ** 0.5

        if self.scale_attn_by_inverse_layer_idx:
            scale_factor /= float(self.layer_idx + 1)

        # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
        with autocast(enabled=False):
            q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
            attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
            attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)

        if not self.is_cross_attention:
            # if only "normal" attention layer implements causal mask
            query_length, key_length = query.size(-2), key.size(-2)
            causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
            mask_value = torch.finfo(attn_weights.dtype).min
            # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
            # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
            mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
            attn_weights = torch.where(causal_mask, attn_weights, mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
        if attn_weights.dtype != torch.float32:
            raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def _split_heads(self, tensor, num_heads, attn_head_size):
        """
        Splits hidden_size dim into attn_head_size and num_heads
        """
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(new_shape)
        return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    def _merge_heads(self, tensor, num_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden_size
        """
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
        return tensor.view(new_shape)

    def forward(
        self,
        hidden_states: Optional[Tuple[torch.FloatTensor]],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
        if encoder_hidden_states is not None:
            raise NotImplementedError("Cross-attention not implemented for MQA")
            if not hasattr(self, "q_attn"):
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
            attention_mask = encoder_attention_mask
        else:
            query = self.q_attn(hidden_states)
            key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2)


        batch_size, seq_length = query.shape[:2]
        # (query_length, batch, num_heads, head_dim)
        # (batch, num_heads * query_length, head_dim)\

        # (batch, query_length, hidden_size) -> (batch, num_heads, query_length, head_dim)
        query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).permute([0, 2, 1, 3])
        # -> (batch, num_heads * query_length, head_dim)
        query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim)

        # (batch, query_length, hidden_size) -> (batch, query_length * num_heads, head_dim)
        # query = query.view(
        #     batch_size, seq_length, self.num_heads, self.head_dim,
        # ).reshape(
        #     batch_size, seq_length * self.num_heads, self.head_dim
        # )
        key = key.permute(0, 2, 1)  # (batch_size, head_dim, seq_length)
        # value (batch_size, seq_length, head_dim)

        if layer_past is not None:
            past_key, past_value = layer_past
            # Concatenate on sequence dimension
            key = torch.cat((past_key, key), dim=-1)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        if self.reorder_and_upcast_attn:
            raise NotImplementedError("Reorder and upcast attention not implemented for MQA")
            attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
        else:
            attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


# inherit from gpt_modeling.py, and override `attn` module
class GPT2CustomBlock(GPT2Block):

    def __init__(self, config: GPT2CustomConfig, layer_idx=None):
        super().__init__(config, layer_idx)
        # Override attention module if using multiquery
        if config.attention_head_type == MULTI_QUERY:
            self.attn = GPT2MQAttention(config, layer_idx=layer_idx)
            if config.add_cross_attention:
                raise NotImplementedError("Cross-attention not implemented for MQA")


# inherit from gpt_modeling.py and override `__init__` method
class GPT2CustomModel(GPT2Model):
    config_class = GPT2CustomConfig
    
    def __init__(self, config):
        GPT2PreTrainedModel.__init__(self, config)

        self.embed_dim = config.hidden_size

        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)

        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()


class GPT2LMHeadCustomModel(GPT2LMHeadModel):
    config_class = GPT2CustomConfig

    def __init__(self, config):
        GPT2PreTrainedModel.__init__(self, config)
        self.transformer = GPT2CustomModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()