Upload folder using huggingface_hub (#2)
Browse files- 5b43aba3cb8b289531d149f703fcb76c0a437acfaecc5244a46bf1313e7c6536 (958a7756c3a787c2a7aa4b20fbca0b40d155f2a5)
- d9a7797220f58c53eabc7e2d39f3ac00e3b49b98d8e70a9c69ae27e1b937e230 (eb3409fc8da84d792b0900b94163176c80ae1edf)
- README.md +5 -5
- config.json +1 -1
- model.safetensors +1 -1
- smash_config.json +1 -1
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
-
base_model:
|
4 |
metrics:
|
5 |
- memory_disk
|
6 |
- memory_inference
|
@@ -52,7 +52,7 @@ tags:
|
|
52 |
|
53 |
You can run the smashed model with these steps:
|
54 |
|
55 |
-
0. Check requirements from the original repo
|
56 |
1. Make sure that you have installed quantization related packages.
|
57 |
```bash
|
58 |
pip install transformers accelerate bitsandbytes>0.37.0
|
@@ -63,7 +63,7 @@ You can run the smashed model with these steps:
|
|
63 |
|
64 |
|
65 |
model = AutoModelForCausalLM.from_pretrained("PrunaAI/neeleshg23-jamba-1.9b-7-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
67 |
|
68 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
|
@@ -77,9 +77,9 @@ The configuration info are in `smash_config.json`.
|
|
77 |
|
78 |
## Credits & License
|
79 |
|
80 |
-
The license of the smashed model follows the license of the original model. Please check the license of the original model
|
81 |
|
82 |
## Want to compress other models?
|
83 |
|
84 |
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
-
-
|
|
|
1 |
---
|
2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: neeleshg23/jamba-1.9b-7
|
4 |
metrics:
|
5 |
- memory_disk
|
6 |
- memory_inference
|
|
|
52 |
|
53 |
You can run the smashed model with these steps:
|
54 |
|
55 |
+
0. Check requirements from the original repo neeleshg23/jamba-1.9b-7 installed. In particular, check python, cuda, and transformers versions.
|
56 |
1. Make sure that you have installed quantization related packages.
|
57 |
```bash
|
58 |
pip install transformers accelerate bitsandbytes>0.37.0
|
|
|
63 |
|
64 |
|
65 |
model = AutoModelForCausalLM.from_pretrained("PrunaAI/neeleshg23-jamba-1.9b-7-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("neeleshg23/jamba-1.9b-7")
|
67 |
|
68 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
|
|
|
77 |
|
78 |
## Credits & License
|
79 |
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model neeleshg23/jamba-1.9b-7 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
|
82 |
## Want to compress other models?
|
83 |
|
84 |
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/covalent/.cache/models/
|
3 |
"architectures": [
|
4 |
"JambaForCausalLM"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/covalent/.cache/models/tmp_52zyzai_lzq9dm2",
|
3 |
"architectures": [
|
4 |
"JambaForCausalLM"
|
5 |
],
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2425351143
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7be7cf1530fd026f370bd5a3955e8760139d14c19157325ae38f67e9a4520095
|
3 |
size 2425351143
|
smash_config.json
CHANGED
@@ -28,7 +28,7 @@
|
|
28 |
"quant_llm-int8_weight_bits": 8,
|
29 |
"max_batch_size": 1,
|
30 |
"device": "cuda",
|
31 |
-
"cache_dir": "/covalent/.cache/models/
|
32 |
"task": "",
|
33 |
"save_load_fn": "bitsandbytes",
|
34 |
"save_load_fn_args": {}
|
|
|
28 |
"quant_llm-int8_weight_bits": 8,
|
29 |
"max_batch_size": 1,
|
30 |
"device": "cuda",
|
31 |
+
"cache_dir": "/covalent/.cache/models/tmp_52zyzai",
|
32 |
"task": "",
|
33 |
"save_load_fn": "bitsandbytes",
|
34 |
"save_load_fn_args": {}
|