Created and evaluated PPO model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.24 +/- 17.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd830bcd820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd830bcd8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd830bcd940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd830bcd9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fd830bcda60>", "forward": "<function ActorCriticPolicy.forward at 0x7fd830bcdaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd830bcdb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd830bcdc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd830bcdca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd830bcdd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd830bcddc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd830bcde50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd830bc8960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674063709707791453, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOL87yUIIk78q+GPM9eeL4lxL28UZqzvQAAAAAAAAAA0ysavv89yz6fpY0+K+a3vpTrFz3CMEA9AAAAAAAAAABmlqc7XFNnumrBzTSzyaiv/t6jui2/8rMAAIA/AACAPy1UUD5Wce0+Q60TvgDzW74JS4W7PZQLvQAAAAAAAAAA2sOLPS5vqD9mzxI+YsnovpzMNz7Cxl29AAAAAAAAAAAWVao+Ia8pP8rG8DuZLM2+nYy1Pm4T5b0AAAAAAAAAADoTcr5GCJ0+a2pjPmf8l74+yzS8SobtvAAAAAAAAAAAMyARPRQOk7r1Xoc9iz6wPOGUNLsoFpg9AACAPwAAgD+ATyc9pI9Iu3LcpTuO5Kk85imHvL7qkD0AAIA/AACAPzNPNT0OjZQ980i6vTfwir4Ycga9jTsFPAAAAAAAAAAAgMn/PaKucT8kRLM9KpK8vmx8CT7/sRW9AAAAAAAAAADAV9w90my3u0YHmb1AmQY9rH4RvTKJ3T0AAAAAAACAP2Zmtzw5+0I+pQriva4Iir6F2pu9saI6vQAAAAAAAAAAZgO2PfaEErz40/g78H6EPPtoab1Sq2I9AACAPwAAgD/NXi89e3KvupdiOrgppkmzHIkoOYqPVTcAAIA/AACAPzM/aLwHaEw/skBdPTpbob4IGlC84kxdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+glnt9YickCUhpRSlIwBbJRNGAGMAXSUR0CUpMqveP7vdX2UKGgGaAloD0MIxty1hPz6cECUhpRSlGgVTRsBaBZHQJSlLxBmf5F1fZQoaAZoCWgPQwgYITzauIdwQJSGlFKUaBVNIAFoFkdAlKVnV09yLnV9lChoBmgJaA9DCKt14nK8jG5AlIaUUpRoFU1KAWgWR0CUpYUn5SFXdX2UKGgGaAloD0MISPsfYC2obECUhpRSlGgVTScBaBZHQJSlyhPCVKR1fZQoaAZoCWgPQwgU7L/OjWpxQJSGlFKUaBVNSAFoFkdAlKXa24NI9XV9lChoBmgJaA9DCBNIiV2bbnFAlIaUUpRoFU0rAWgWR0CUplk6cRUWdX2UKGgGaAloD0MIEojX9Yt+cUCUhpRSlGgVTbQBaBZHQJSoFgb6xgR1fZQoaAZoCWgPQwiVSQ1tABZvQJSGlFKUaBVNDgFoFkdAlKiXPAwfyXV9lChoBmgJaA9DCFn7O9sj+G5AlIaUUpRoFU1NAWgWR0CUqOn27FsIdX2UKGgGaAloD0MIyR8MPHfCbECUhpRSlGgVTU0BaBZHQJSpArOJLuh1fZQoaAZoCWgPQwgB+RIq+IZwQJSGlFKUaBVNMwFoFkdAlKm35BTn73V9lChoBmgJaA9DCI8ZqIx/2G9AlIaUUpRoFU0JAWgWR0CUqk4hEBsAdX2UKGgGaAloD0MIWYejq7RdckCUhpRSlGgVTQQBaBZHQJSrMpNKyv91fZQoaAZoCWgPQwi94T5yKw1wQJSGlFKUaBVNIgFoFkdAlKxc+7lJYnV9lChoBmgJaA9DCLZKsDjcBnJAlIaUUpRoFU0lAWgWR0CUrGXYUWVNdX2UKGgGaAloD0MIlwM91LaSckCUhpRSlGgVTSABaBZHQJSsuJJoTPB1fZQoaAZoCWgPQwh8KxITVF9wQJSGlFKUaBVNGgFoFkdAlKzE/bCaZ3V9lChoBmgJaA9DCOM3hZWKj3FAlIaUUpRoFU0dAWgWR0CUrPOWBz3idX2UKGgGaAloD0MIkdPX8/VpcUCUhpRSlGgVTUYBaBZHQJStBfOUt7N1fZQoaAZoCWgPQwiWeauuQyluQJSGlFKUaBVNRQFoFkdAlK74DcM3InV9lChoBmgJaA9DCFd4l4v4v3BAlIaUUpRoFU1aAWgWR0CUrvh7VrhzdX2UKGgGaAloD0MIQwBw7JkqcUCUhpRSlGgVTWABaBZHQJSvEqlP8AJ1fZQoaAZoCWgPQwjhDWlUYLxvQJSGlFKUaBVNEQFoFkdAlK9iVSn+AHV9lChoBmgJaA9DCEBtVKdD+nJAlIaUUpRoFU0LAWgWR0CUr/FCb+cZdX2UKGgGaAloD0MIj4zV5n9ScUCUhpRSlGgVTRUBaBZHQJSxHcSGrS51fZQoaAZoCWgPQwg5nPnVHK9yQJSGlFKUaBVNUgFoFkdAlLIJNj9XLnV9lChoBmgJaA9DCEgxQKKJbHBAlIaUUpRoFU0iAWgWR0CUsi3iJfpmdX2UKGgGaAloD0MI1gEQd/XtbUCUhpRSlGgVTWoBaBZHQJSyTZ7HAAR1fZQoaAZoCWgPQwiNmq+SDwNyQJSGlFKUaBVNDAFoFkdAlLOp4rz5GnV9lChoBmgJaA9DCOpb5nTZQXBAlIaUUpRoFU0TAWgWR0CUs9lv60pmdX2UKGgGaAloD0MIk/3zNKAAcUCUhpRSlGgVTT8BaBZHQJSz8Gkep4t1fZQoaAZoCWgPQwigbTXrzH5yQJSGlFKUaBVNHAFoFkdAlLR6CHymRHV9lChoBmgJaA9DCHsy/+ib7G5AlIaUUpRoFU0tAWgWR0CUtUEpRXOodX2UKGgGaAloD0MIsmSO5V0DckCUhpRSlGgVTUIBaBZHQJS1v/S6UaB1fZQoaAZoCWgPQwj0jH3Jxp8xQJSGlFKUaBVL7GgWR0CUtqSSvC/HdX2UKGgGaAloD0MI7Uj1nR9kcECUhpRSlGgVTR0BaBZHQJS3BPWQOnV1fZQoaAZoCWgPQwggKLftOwtxQJSGlFKUaBVNJQFoFkdAlLclrIo3JnV9lChoBmgJaA9DCDaSBOEKzWxAlIaUUpRoFU00AWgWR0CUt5JqIrOJdX2UKGgGaAloD0MIZVJDG4DlcUCUhpRSlGgVTYwBaBZHQJS3ttix3V11fZQoaAZoCWgPQwiiX1s//cFtQJSGlFKUaBVNMQFoFkdAlLfwuRLbpXV9lChoBmgJaA9DCOZ5cHfWej5AlIaUUpRoFUvgaBZHQJS4clzEJjV1fZQoaAZoCWgPQwgOEqJ8QZpvQJSGlFKUaBVNHwFoFkdAlLkpmZmZmnV9lChoBmgJaA9DCFMJT+g15XFAlIaUUpRoFU0MAWgWR0CUuW0VrRBvdX2UKGgGaAloD0MIgxjo2pfabUCUhpRSlGgVTQ8BaBZHQJS5qumrKeV1fZQoaAZoCWgPQwia6V4ndTttQJSGlFKUaBVNCAFoFkdAlMzYwyqMnHV9lChoBmgJaA9DCHJRLSJKxHFAlIaUUpRoFU0WAWgWR0CUzPl+EytWdX2UKGgGaAloD0MIBg39E1zMbkCUhpRSlGgVTRUBaBZHQJTOfOUt7KJ1fZQoaAZoCWgPQwg/qfbpeFtyQJSGlFKUaBVNDAFoFkdAlM7HndO6/nV9lChoBmgJaA9DCMa/z7jwO3JAlIaUUpRoFU1nAWgWR0CUz4ETg2qDdX2UKGgGaAloD0MIiqw1lNp8b0CUhpRSlGgVTRIBaBZHQJTQaYeDFqB1fZQoaAZoCWgPQwjhmjv6XzxwQJSGlFKUaBVNMgFoFkdAlNFjUNKAa3V9lChoBmgJaA9DCMYUrHH2qHBAlIaUUpRoFU2LAWgWR0CU0XybhFVldX2UKGgGaAloD0MIpiptcY0IcUCUhpRSlGgVTUkBaBZHQJTRuNp/PPd1fZQoaAZoCWgPQwi/7nTniYFNQJSGlFKUaBVL2WgWR0CU0eX05EMLdX2UKGgGaAloD0MInRIQk/DMcUCUhpRSlGgVTTMBaBZHQJTR+35N47l1fZQoaAZoCWgPQwi1FfvLbiFuQJSGlFKUaBVNGAFoFkdAlNI40l7dBXV9lChoBmgJaA9DCPNXyFyZn3FAlIaUUpRoFUv9aBZHQJTSi6OHWSV1fZQoaAZoCWgPQwg5RrJHqMZsQJSGlFKUaBVNSgFoFkdAlNLmGRFI/nV9lChoBmgJaA9DCCfdlsgFxnBAlIaUUpRoFU1gAWgWR0CU0zDzRQaadX2UKGgGaAloD0MIOwFNhI1YckCUhpRSlGgVTSsBaBZHQJTTTqkdmxt1fZQoaAZoCWgPQwj5vU1/tq1wQJSGlFKUaBVNAAFoFkdAlNQZJCjUNXV9lChoBmgJaA9DCPD9Ddpr7XFAlIaUUpRoFU01AWgWR0CU1TbA1vVFdX2UKGgGaAloD0MIGw3gLRCkcECUhpRSlGgVTQABaBZHQJTVZZJTVDt1fZQoaAZoCWgPQwgqGmt/J0BwQJSGlFKUaBVNDQFoFkdAlNXtutOmBXV9lChoBmgJaA9DCLXFNT6T1HBAlIaUUpRoFU0jAWgWR0CU1xIDYAbRdX2UKGgGaAloD0MI3GPpQ9eMckCUhpRSlGgVTSwBaBZHQJTYKQ9zOop1fZQoaAZoCWgPQwgc8PlhxFNxQJSGlFKUaBVNDgFoFkdAlNinwCr923V9lChoBmgJaA9DCDLH8q56YmxAlIaUUpRoFU0rAWgWR0CU2SN/OMVDdX2UKGgGaAloD0MI5+RFJiDfckCUhpRSlGgVTRsBaBZHQJTZLJvHcUN1fZQoaAZoCWgPQwi6ap4jMktxQJSGlFKUaBVNIQFoFkdAlNms3EQ5FXV9lChoBmgJaA9DCEW8df5tdGxAlIaUUpRoFU0OAWgWR0CU2fadtl7MdX2UKGgGaAloD0MIoSx8fe1YcECUhpRSlGgVTT8BaBZHQJTaDn7pFCt1fZQoaAZoCWgPQwj/zvboTTFxQJSGlFKUaBVNCwFoFkdAlNpBxT850nV9lChoBmgJaA9DCMtKk1JQ43BAlIaUUpRoFU1RAWgWR0CU2j974SHudX2UKGgGaAloD0MIzt2ul+YKckCUhpRSlGgVTS0BaBZHQJTaZnkDIR11fZQoaAZoCWgPQwhUHAdeLbdtQJSGlFKUaBVNDgFoFkdAlNp6tknTiXV9lChoBmgJaA9DCPskd9jEKm5AlIaUUpRoFU0xAWgWR0CU3AiW3Sa3dX2UKGgGaAloD0MItrxyvW1dbkCUhpRSlGgVTScBaBZHQJTdKIWP91l1fZQoaAZoCWgPQwi5NlSMM2FwQJSGlFKUaBVNSAFoFkdAlN3nFglWwXV9lChoBmgJaA9DCLPr3opEP3BAlIaUUpRoFU0sAWgWR0CU3e7SApazdX2UKGgGaAloD0MIIa0x6IQMcUCUhpRSlGgVTRIBaBZHQJTeakCV8kV1fZQoaAZoCWgPQwi38LxUbEpPQJSGlFKUaBVL32gWR0CU367bL2YfdX2UKGgGaAloD0MIQBh47n1QckCUhpRSlGgVTQ0BaBZHQJTfyce8wpR1fZQoaAZoCWgPQwgHzhlRGnhyQJSGlFKUaBVNLQFoFkdAlOBLWiDdxnV9lChoBmgJaA9DCEinrnwWnm9AlIaUUpRoFU0QAWgWR0CU4ZwCr92pdX2UKGgGaAloD0MIyo0iaw1Sb0CUhpRSlGgVTRkBaBZHQJTiAqy4Wk91fZQoaAZoCWgPQwj034PXLpByQJSGlFKUaBVNSgFoFkdAlOIz/2kBS3V9lChoBmgJaA9DCOQtVz82WG9AlIaUUpRoFU0sAWgWR0CU4lOuq3mWdX2UKGgGaAloD0MINjy9UpbxcUCUhpRSlGgVTUMBaBZHQJTichcJMQF1fZQoaAZoCWgPQwghsd09gKZyQJSGlFKUaBVNOQFoFkdAlOK3pGFzuHV9lChoBmgJaA9DCCDvVStTk3BAlIaUUpRoFU1IAWgWR0CU4tgWrOqvdX2UKGgGaAloD0MI1ouhnOgNb0CUhpRSlGgVTWsBaBZHQJTjEt6HCXR1fZQoaAZoCWgPQwjAstKk1BVzQJSGlFKUaBVL72gWR0CU5J0XP7emdX2UKGgGaAloD0MIjErqBPTNckCUhpRSlGgVTTwBaBZHQJTkvz3AVO91fZQoaAZoCWgPQwg/4lesIWFwQJSGlFKUaBVNCwFoFkdAlOVYsd1dPnV9lChoBmgJaA9DCJOoF3yaEHFAlIaUUpRoFU01AWgWR0CU5cDmr8zidX2UKGgGaAloD0MIAI49e25QckCUhpRSlGgVTRkBaBZHQJTmLtShrWR1fZQoaAZoCWgPQwgKhJ1ilZtwQJSGlFKUaBVNBAFoFkdAlObDEm6XjXV9lChoBmgJaA9DCDXs98R6EHFAlIaUUpRoFU0JAWgWR0CU5vfCQ9zPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6857f04720e23fb8d546eceef1321962990974680b61ddb0607901241a1ab8f8
|
3 |
+
size 147416
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd830bcd820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd830bcd8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd830bcd940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd830bcd9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd830bcda60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd830bcdaf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd830bcdb80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd830bcdc10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd830bcdca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd830bcdd30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd830bcddc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd830bcde50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd830bc8960>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674063709707791453,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOL87yUIIk78q+GPM9eeL4lxL28UZqzvQAAAAAAAAAA0ysavv89yz6fpY0+K+a3vpTrFz3CMEA9AAAAAAAAAABmlqc7XFNnumrBzTSzyaiv/t6jui2/8rMAAIA/AACAPy1UUD5Wce0+Q60TvgDzW74JS4W7PZQLvQAAAAAAAAAA2sOLPS5vqD9mzxI+YsnovpzMNz7Cxl29AAAAAAAAAAAWVao+Ia8pP8rG8DuZLM2+nYy1Pm4T5b0AAAAAAAAAADoTcr5GCJ0+a2pjPmf8l74+yzS8SobtvAAAAAAAAAAAMyARPRQOk7r1Xoc9iz6wPOGUNLsoFpg9AACAPwAAgD+ATyc9pI9Iu3LcpTuO5Kk85imHvL7qkD0AAIA/AACAPzNPNT0OjZQ980i6vTfwir4Ycga9jTsFPAAAAAAAAAAAgMn/PaKucT8kRLM9KpK8vmx8CT7/sRW9AAAAAAAAAADAV9w90my3u0YHmb1AmQY9rH4RvTKJ3T0AAAAAAACAP2Zmtzw5+0I+pQriva4Iir6F2pu9saI6vQAAAAAAAAAAZgO2PfaEErz40/g78H6EPPtoab1Sq2I9AACAPwAAgD/NXi89e3KvupdiOrgppkmzHIkoOYqPVTcAAIA/AACAPzM/aLwHaEw/skBdPTpbob4IGlC84kxdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+glnt9YickCUhpRSlIwBbJRNGAGMAXSUR0CUpMqveP7vdX2UKGgGaAloD0MIxty1hPz6cECUhpRSlGgVTRsBaBZHQJSlLxBmf5F1fZQoaAZoCWgPQwgYITzauIdwQJSGlFKUaBVNIAFoFkdAlKVnV09yLnV9lChoBmgJaA9DCKt14nK8jG5AlIaUUpRoFU1KAWgWR0CUpYUn5SFXdX2UKGgGaAloD0MISPsfYC2obECUhpRSlGgVTScBaBZHQJSlyhPCVKR1fZQoaAZoCWgPQwgU7L/OjWpxQJSGlFKUaBVNSAFoFkdAlKXa24NI9XV9lChoBmgJaA9DCBNIiV2bbnFAlIaUUpRoFU0rAWgWR0CUplk6cRUWdX2UKGgGaAloD0MIEojX9Yt+cUCUhpRSlGgVTbQBaBZHQJSoFgb6xgR1fZQoaAZoCWgPQwiVSQ1tABZvQJSGlFKUaBVNDgFoFkdAlKiXPAwfyXV9lChoBmgJaA9DCFn7O9sj+G5AlIaUUpRoFU1NAWgWR0CUqOn27FsIdX2UKGgGaAloD0MIyR8MPHfCbECUhpRSlGgVTU0BaBZHQJSpArOJLuh1fZQoaAZoCWgPQwgB+RIq+IZwQJSGlFKUaBVNMwFoFkdAlKm35BTn73V9lChoBmgJaA9DCI8ZqIx/2G9AlIaUUpRoFU0JAWgWR0CUqk4hEBsAdX2UKGgGaAloD0MIWYejq7RdckCUhpRSlGgVTQQBaBZHQJSrMpNKyv91fZQoaAZoCWgPQwi94T5yKw1wQJSGlFKUaBVNIgFoFkdAlKxc+7lJYnV9lChoBmgJaA9DCLZKsDjcBnJAlIaUUpRoFU0lAWgWR0CUrGXYUWVNdX2UKGgGaAloD0MIlwM91LaSckCUhpRSlGgVTSABaBZHQJSsuJJoTPB1fZQoaAZoCWgPQwh8KxITVF9wQJSGlFKUaBVNGgFoFkdAlKzE/bCaZ3V9lChoBmgJaA9DCOM3hZWKj3FAlIaUUpRoFU0dAWgWR0CUrPOWBz3idX2UKGgGaAloD0MIkdPX8/VpcUCUhpRSlGgVTUYBaBZHQJStBfOUt7N1fZQoaAZoCWgPQwiWeauuQyluQJSGlFKUaBVNRQFoFkdAlK74DcM3InV9lChoBmgJaA9DCFd4l4v4v3BAlIaUUpRoFU1aAWgWR0CUrvh7VrhzdX2UKGgGaAloD0MIQwBw7JkqcUCUhpRSlGgVTWABaBZHQJSvEqlP8AJ1fZQoaAZoCWgPQwjhDWlUYLxvQJSGlFKUaBVNEQFoFkdAlK9iVSn+AHV9lChoBmgJaA9DCEBtVKdD+nJAlIaUUpRoFU0LAWgWR0CUr/FCb+cZdX2UKGgGaAloD0MIj4zV5n9ScUCUhpRSlGgVTRUBaBZHQJSxHcSGrS51fZQoaAZoCWgPQwg5nPnVHK9yQJSGlFKUaBVNUgFoFkdAlLIJNj9XLnV9lChoBmgJaA9DCEgxQKKJbHBAlIaUUpRoFU0iAWgWR0CUsi3iJfpmdX2UKGgGaAloD0MI1gEQd/XtbUCUhpRSlGgVTWoBaBZHQJSyTZ7HAAR1fZQoaAZoCWgPQwiNmq+SDwNyQJSGlFKUaBVNDAFoFkdAlLOp4rz5GnV9lChoBmgJaA9DCOpb5nTZQXBAlIaUUpRoFU0TAWgWR0CUs9lv60pmdX2UKGgGaAloD0MIk/3zNKAAcUCUhpRSlGgVTT8BaBZHQJSz8Gkep4t1fZQoaAZoCWgPQwigbTXrzH5yQJSGlFKUaBVNHAFoFkdAlLR6CHymRHV9lChoBmgJaA9DCHsy/+ib7G5AlIaUUpRoFU0tAWgWR0CUtUEpRXOodX2UKGgGaAloD0MIsmSO5V0DckCUhpRSlGgVTUIBaBZHQJS1v/S6UaB1fZQoaAZoCWgPQwj0jH3Jxp8xQJSGlFKUaBVL7GgWR0CUtqSSvC/HdX2UKGgGaAloD0MI7Uj1nR9kcECUhpRSlGgVTR0BaBZHQJS3BPWQOnV1fZQoaAZoCWgPQwggKLftOwtxQJSGlFKUaBVNJQFoFkdAlLclrIo3JnV9lChoBmgJaA9DCDaSBOEKzWxAlIaUUpRoFU00AWgWR0CUt5JqIrOJdX2UKGgGaAloD0MIZVJDG4DlcUCUhpRSlGgVTYwBaBZHQJS3ttix3V11fZQoaAZoCWgPQwiiX1s//cFtQJSGlFKUaBVNMQFoFkdAlLfwuRLbpXV9lChoBmgJaA9DCOZ5cHfWej5AlIaUUpRoFUvgaBZHQJS4clzEJjV1fZQoaAZoCWgPQwgOEqJ8QZpvQJSGlFKUaBVNHwFoFkdAlLkpmZmZmnV9lChoBmgJaA9DCFMJT+g15XFAlIaUUpRoFU0MAWgWR0CUuW0VrRBvdX2UKGgGaAloD0MIgxjo2pfabUCUhpRSlGgVTQ8BaBZHQJS5qumrKeV1fZQoaAZoCWgPQwia6V4ndTttQJSGlFKUaBVNCAFoFkdAlMzYwyqMnHV9lChoBmgJaA9DCHJRLSJKxHFAlIaUUpRoFU0WAWgWR0CUzPl+EytWdX2UKGgGaAloD0MIBg39E1zMbkCUhpRSlGgVTRUBaBZHQJTOfOUt7KJ1fZQoaAZoCWgPQwg/qfbpeFtyQJSGlFKUaBVNDAFoFkdAlM7HndO6/nV9lChoBmgJaA9DCMa/z7jwO3JAlIaUUpRoFU1nAWgWR0CUz4ETg2qDdX2UKGgGaAloD0MIiqw1lNp8b0CUhpRSlGgVTRIBaBZHQJTQaYeDFqB1fZQoaAZoCWgPQwjhmjv6XzxwQJSGlFKUaBVNMgFoFkdAlNFjUNKAa3V9lChoBmgJaA9DCMYUrHH2qHBAlIaUUpRoFU2LAWgWR0CU0XybhFVldX2UKGgGaAloD0MIpiptcY0IcUCUhpRSlGgVTUkBaBZHQJTRuNp/PPd1fZQoaAZoCWgPQwi/7nTniYFNQJSGlFKUaBVL2WgWR0CU0eX05EMLdX2UKGgGaAloD0MInRIQk/DMcUCUhpRSlGgVTTMBaBZHQJTR+35N47l1fZQoaAZoCWgPQwi1FfvLbiFuQJSGlFKUaBVNGAFoFkdAlNI40l7dBXV9lChoBmgJaA9DCPNXyFyZn3FAlIaUUpRoFUv9aBZHQJTSi6OHWSV1fZQoaAZoCWgPQwg5RrJHqMZsQJSGlFKUaBVNSgFoFkdAlNLmGRFI/nV9lChoBmgJaA9DCCfdlsgFxnBAlIaUUpRoFU1gAWgWR0CU0zDzRQaadX2UKGgGaAloD0MIOwFNhI1YckCUhpRSlGgVTSsBaBZHQJTTTqkdmxt1fZQoaAZoCWgPQwj5vU1/tq1wQJSGlFKUaBVNAAFoFkdAlNQZJCjUNXV9lChoBmgJaA9DCPD9Ddpr7XFAlIaUUpRoFU01AWgWR0CU1TbA1vVFdX2UKGgGaAloD0MIGw3gLRCkcECUhpRSlGgVTQABaBZHQJTVZZJTVDt1fZQoaAZoCWgPQwgqGmt/J0BwQJSGlFKUaBVNDQFoFkdAlNXtutOmBXV9lChoBmgJaA9DCLXFNT6T1HBAlIaUUpRoFU0jAWgWR0CU1xIDYAbRdX2UKGgGaAloD0MI3GPpQ9eMckCUhpRSlGgVTSwBaBZHQJTYKQ9zOop1fZQoaAZoCWgPQwgc8PlhxFNxQJSGlFKUaBVNDgFoFkdAlNinwCr923V9lChoBmgJaA9DCDLH8q56YmxAlIaUUpRoFU0rAWgWR0CU2SN/OMVDdX2UKGgGaAloD0MI5+RFJiDfckCUhpRSlGgVTRsBaBZHQJTZLJvHcUN1fZQoaAZoCWgPQwi6ap4jMktxQJSGlFKUaBVNIQFoFkdAlNms3EQ5FXV9lChoBmgJaA9DCEW8df5tdGxAlIaUUpRoFU0OAWgWR0CU2fadtl7MdX2UKGgGaAloD0MIoSx8fe1YcECUhpRSlGgVTT8BaBZHQJTaDn7pFCt1fZQoaAZoCWgPQwj/zvboTTFxQJSGlFKUaBVNCwFoFkdAlNpBxT850nV9lChoBmgJaA9DCMtKk1JQ43BAlIaUUpRoFU1RAWgWR0CU2j974SHudX2UKGgGaAloD0MIzt2ul+YKckCUhpRSlGgVTS0BaBZHQJTaZnkDIR11fZQoaAZoCWgPQwhUHAdeLbdtQJSGlFKUaBVNDgFoFkdAlNp6tknTiXV9lChoBmgJaA9DCPskd9jEKm5AlIaUUpRoFU0xAWgWR0CU3AiW3Sa3dX2UKGgGaAloD0MItrxyvW1dbkCUhpRSlGgVTScBaBZHQJTdKIWP91l1fZQoaAZoCWgPQwi5NlSMM2FwQJSGlFKUaBVNSAFoFkdAlN3nFglWwXV9lChoBmgJaA9DCLPr3opEP3BAlIaUUpRoFU0sAWgWR0CU3e7SApazdX2UKGgGaAloD0MIIa0x6IQMcUCUhpRSlGgVTRIBaBZHQJTeakCV8kV1fZQoaAZoCWgPQwi38LxUbEpPQJSGlFKUaBVL32gWR0CU367bL2YfdX2UKGgGaAloD0MIQBh47n1QckCUhpRSlGgVTQ0BaBZHQJTfyce8wpR1fZQoaAZoCWgPQwgHzhlRGnhyQJSGlFKUaBVNLQFoFkdAlOBLWiDdxnV9lChoBmgJaA9DCEinrnwWnm9AlIaUUpRoFU0QAWgWR0CU4ZwCr92pdX2UKGgGaAloD0MIyo0iaw1Sb0CUhpRSlGgVTRkBaBZHQJTiAqy4Wk91fZQoaAZoCWgPQwj034PXLpByQJSGlFKUaBVNSgFoFkdAlOIz/2kBS3V9lChoBmgJaA9DCOQtVz82WG9AlIaUUpRoFU0sAWgWR0CU4lOuq3mWdX2UKGgGaAloD0MINjy9UpbxcUCUhpRSlGgVTUMBaBZHQJTichcJMQF1fZQoaAZoCWgPQwghsd09gKZyQJSGlFKUaBVNOQFoFkdAlOK3pGFzuHV9lChoBmgJaA9DCCDvVStTk3BAlIaUUpRoFU1IAWgWR0CU4tgWrOqvdX2UKGgGaAloD0MI1ouhnOgNb0CUhpRSlGgVTWsBaBZHQJTjEt6HCXR1fZQoaAZoCWgPQwjAstKk1BVzQJSGlFKUaBVL72gWR0CU5J0XP7emdX2UKGgGaAloD0MIjErqBPTNckCUhpRSlGgVTTwBaBZHQJTkvz3AVO91fZQoaAZoCWgPQwg/4lesIWFwQJSGlFKUaBVNCwFoFkdAlOVYsd1dPnV9lChoBmgJaA9DCJOoF3yaEHFAlIaUUpRoFU01AWgWR0CU5cDmr8zidX2UKGgGaAloD0MIAI49e25QckCUhpRSlGgVTRkBaBZHQJTmLtShrWR1fZQoaAZoCWgPQwgKhJ1ilZtwQJSGlFKUaBVNBAFoFkdAlObDEm6XjXV9lChoBmgJaA9DCDXs98R6EHFAlIaUUpRoFU0JAWgWR0CU5vfCQ9zPdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 300,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:725ff6db649feb947accd8d34bb1b434a25e5fb3456e23905598365b80d677a1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:306193deafd9de8b376da8adbd4ebfe893eeee2ac336c4ce9a4a0a8aff771e04
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.24217025964543, "std_reward": 17.82478068886469, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T18:07:24.850490"}
|