|
--- |
|
license: wtfpl |
|
language: |
|
- en |
|
tags: |
|
- mamba-hf |
|
--- |
|
|
|
# MambaHermes-3B |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/63da3d7ae697e5898cb86854/A3BYIH-q7G5vz4NlsPlGJ.jpeg" width="300" height="300" alt="mamba-hf"> |
|
|
|
Mamba Models with hf_integration. |
|
|
|
For modeling codes: [**mamba-hf**](https://github.com/LegallyCoder/mamba-hf) |
|
|
|
# Usage: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta" |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
model_name = "Q-bert/MambaHermes-3B" |
|
|
|
eos_token = "<|endoftext|>" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.eos_token = eos_token |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, device_map=device, trust_remote_code=True) |
|
|
|
messages = [] |
|
prompt = "Tell me 5 sites to visit in Spain" |
|
messages.append(dict(role="user", content=prompt)) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, return_tensors="pt", add_generation_prompt=True |
|
).to(device) |
|
|
|
out = model.generate( |
|
input_ids=input_ids, |
|
max_length=2000, |
|
temperature=0.9, |
|
top_p=0.7, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
decoded = tokenizer.batch_decode(out) |
|
assistant_message = ( |
|
decoded[0].split("<|assistant|>\n")[-1].replace(tokenizer.eos_token, "") |
|
) |
|
|
|
print(assistant_message) |
|
|
|
``` |
|
|
|
|
|
# For Training: |
|
```python |
|
from transformers import Trainer ,TrainingArguments |
|
import torch |
|
import os |
|
|
|
|
|
class MambaTrainer(Trainer): |
|
def compute_loss(self, model, inputs, return_outputs=False): |
|
input_ids = inputs.pop("input_ids") |
|
lm_logits = model(input_ids)[0] |
|
|
|
labels = input_ids.to(lm_logits.device) |
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) |
|
|
|
return lm_loss |
|
``` |
|
|
|
You must use this class for training. And fp16 must be **False**. |
|
|
|
# Credits: |
|
|
|
https://huggingface.co/state-spaces |
|
|
|
https://huggingface.co/clibrain/mamba-2.8b-instruct-openhermes |
|
|
|
Special thanks to Albert Gu and Tri Dao for their articles. (https://arxiv.org/abs/2312.00752) |