QCRI
/

nielsr HF staff commited on
Commit
90c7e59
·
verified ·
1 Parent(s): deb46c2

Add library_name: transformers to metadata

Browse files

This PR adds the `library_name: transformers` tag to the model card metadata. The provided code examples clearly demonstrate the model's compatibility with the Hugging Face Transformers library. This addition enhances the model card's completeness and improves its discoverability on the Hugging Face Hub.

Files changed (1) hide show
  1. README.md +12 -13
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
 
3
  datasets:
4
  - QCRI/LlamaLens-English
5
  - QCRI/LlamaLens-Arabic
@@ -8,8 +9,11 @@ language:
8
  - ar
9
  - en
10
  - hi
11
- base_model:
12
- - meta-llama/Llama-3.1-8B-Instruct
 
 
 
13
  pipeline_tag: text-generation
14
  tags:
15
  - Social-Media
@@ -17,12 +21,10 @@ tags:
17
  - Summarization
18
  - offensive-language
19
  - News-Genre
20
- metrics:
21
- - accuracy
22
- - f1
23
- - rouge
24
  ---
25
- # LlamaLens: Specialized Multilingual LLM forAnalyzing News and Social Media Content
 
26
 
27
  ## Overview
28
  LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
@@ -188,7 +190,6 @@ Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refe
188
  | Sarcasm Detection | News-Headlines-Dataset-For-Sarcasm-Detection | Acc | 0.897 | 0.668 | 0.936 | 0.947 | 0.039 |
189
  | Sentiment Classification | NewsMTSC-dataset | Ma-F1 | 0.817 | 0.628 | 0.751 | 0.748 | -0.066 |
190
  | Subjectivity Detection | clef2024-checkthat-lab | Ma-F1 | 0.744 | 0.535 | 0.642 | 0.628 | -0.102 |
191
- |
192
 
193
  ---
194
 
@@ -203,12 +204,10 @@ Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refe
203
  | News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.171 | 0.170 | 0.035 |
204
  | Offensive Language Detection | Offensive Speech Detection | Mi-F1 | 0.723 | 0.621 | 0.862 | 0.865 | 0.139 |
205
  | Cyberbullying Detection | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.625 | 0.627 | 0.016 |
206
- | Sentiment Classification | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.647 | 0.654 | -0.050
207
 
208
  ## Paper
209
- For an in-depth understanding, refer to our paper: [**LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content**](https://arxiv.org/pdf/2410.15308).
210
-
211
-
212
 
213
 
214
  # License
 
1
  ---
2
+ base_model:
3
+ - meta-llama/Llama-3.1-8B-Instruct
4
  datasets:
5
  - QCRI/LlamaLens-English
6
  - QCRI/LlamaLens-Arabic
 
9
  - ar
10
  - en
11
  - hi
12
+ license: cc-by-nc-sa-4.0
13
+ metrics:
14
+ - accuracy
15
+ - f1
16
+ - rouge
17
  pipeline_tag: text-generation
18
  tags:
19
  - Social-Media
 
21
  - Summarization
22
  - offensive-language
23
  - News-Genre
24
+ library_name: transformers
 
 
 
25
  ---
26
+
27
+ # LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content
28
 
29
  ## Overview
30
  LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
 
190
  | Sarcasm Detection | News-Headlines-Dataset-For-Sarcasm-Detection | Acc | 0.897 | 0.668 | 0.936 | 0.947 | 0.039 |
191
  | Sentiment Classification | NewsMTSC-dataset | Ma-F1 | 0.817 | 0.628 | 0.751 | 0.748 | -0.066 |
192
  | Subjectivity Detection | clef2024-checkthat-lab | Ma-F1 | 0.744 | 0.535 | 0.642 | 0.628 | -0.102 |
 
193
 
194
  ---
195
 
 
204
  | News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.171 | 0.170 | 0.035 |
205
  | Offensive Language Detection | Offensive Speech Detection | Mi-F1 | 0.723 | 0.621 | 0.862 | 0.865 | 0.139 |
206
  | Cyberbullying Detection | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.625 | 0.627 | 0.016 |
207
+ | Sentiment Classification | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.647 | 0.654 | -0.050 |
208
 
209
  ## Paper
210
+ For an in-depth understanding, refer to our paper: [LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content](https://arxiv.org/pdf/2410.15308).
 
 
211
 
212
 
213
  # License