File size: 21,530 Bytes
951b7de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# -*- coding: utf-8 -*-
# @Time : 2024/2/17 11:06
# @Author : Haonan Wang
# @File : UCTransNet.py
# @Software: PyCharm
import torch.nn.functional as F
import copy
import math
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, LayerNorm
from torch.nn.modules.utils import _pair, _triple
def get_activation(activation_type):
activation_type = activation_type.lower()
if hasattr(nn, activation_type):
return getattr(nn, activation_type)()
else:
return nn.ReLU()
def _make_nConv(in_channels, out_channels, nb_Conv, activation='ReLU'):
layers = []
layers.append(ConvBatchNorm(in_channels, out_channels, activation))
for _ in range(nb_Conv - 1):
layers.append(ConvBatchNorm(out_channels, out_channels, activation))
return nn.Sequential(*layers)
class ConvBatchNorm(nn.Module):
"""(convolution => [BN] => ReLU)"""
def __init__(self, in_channels, out_channels, activation='ReLU'):
super(ConvBatchNorm, self).__init__()
self.conv = nn.Conv3d(in_channels, out_channels,
kernel_size=3, padding=1)
self.norm = nn.BatchNorm3d(out_channels)
self.activation = get_activation(activation)
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
return self.activation(out)
class DownBlock(nn.Module):
"""Downscaling with maxpool convolution"""
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super(DownBlock, self).__init__()
self.maxpool = nn.MaxPool3d(2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x):
out = self.maxpool(x)
return self.nConvs(out)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class CCA(nn.Module):
"""
CCA Block
"""
def __init__(self, F_g, F_x):
super().__init__()
self.mlp_x = nn.Sequential(
Flatten(),
nn.Linear(F_x, F_x))
self.mlp_g = nn.Sequential(
Flatten(),
nn.Linear(F_g, F_x))
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
# channel-wise attention
avg_pool_x = F.avg_pool3d( x, (x.size(2), x.size(3), x.size(4)), stride=(x.size(2), x.size(3), x.size(4)))
channel_att_x = self.mlp_x(avg_pool_x)
avg_pool_g = F.avg_pool3d( g, (g.size(2), g.size(3), g.size(4)), stride=(g.size(2), g.size(3), g.size(4)))
channel_att_g = self.mlp_g(avg_pool_g)
channel_att_sum = (channel_att_x + channel_att_g)/2.0
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).unsqueeze(4).expand_as(x)
x_after_channel = x * scale
out = self.relu(x_after_channel)
return out
class UpBlock_attention(nn.Module):
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super().__init__()
self.up = nn.Upsample(scale_factor=2)
self.coatt = CCA(F_g=in_channels//2, F_x=in_channels//2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x, skip_x):
up = self.up(x)
skip_x_att = self.coatt(g=up, x=skip_x)
x = torch.cat([skip_x_att, up], dim=1) # dim 1 is the channel dimension
return self.nConvs(x)
class UCTransNet(nn.Module):
def __init__(self, in_channels, out_channels, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate, feature_size, img_size, patch_sizes):
super().__init__()
self.inc = ConvBatchNorm(in_channels, feature_size)
self.down1 = DownBlock(feature_size, feature_size*2, nb_Conv=2)
self.down2 = DownBlock(feature_size*2, feature_size*4, nb_Conv=2)
self.down3 = DownBlock(feature_size*4, feature_size*8, nb_Conv=2)
self.down4 = DownBlock(feature_size*8, feature_size*8, nb_Conv=2)
self.mtc = ChannelTransformer(img_size, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate,
channel_num=[feature_size, feature_size*2, feature_size*4, feature_size*8],
patchSize=patch_sizes)
self.up4 = UpBlock_attention(feature_size*16, feature_size*4, nb_Conv=2)
self.up3 = UpBlock_attention(feature_size*8, feature_size*2, nb_Conv=2)
self.up2 = UpBlock_attention(feature_size*4, feature_size, nb_Conv=2)
self.up1 = UpBlock_attention(feature_size*2, feature_size, nb_Conv=2)
self.outc = nn.Conv3d(feature_size, out_channels, kernel_size=(1, 1, 1), stride=(1, 1, 1))
def forward(self, x):
x = x.float()
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x1,x2,x3,x4 = self.mtc(x1,x2,x3,x4)
x = self.up4(x5, x4)
x = self.up3(x, x3)
x = self.up2(x, x2)
x = self.up1(x, x1)
logits = self.outc(x) # if nusing BCEWithLogitsLoss or class>1
return logits
class Channel_Embeddings(nn.Module):
"""Construct the embeddings from patch, position embeddings.
"""
def __init__(self, patchsize, img_size, in_channels, reduce_scale):
super().__init__()
patch_size = _triple(patchsize)
n_patches = (img_size[0] // reduce_scale // patch_size[0]) * (img_size[1] // reduce_scale // patch_size[1]) * (img_size[2] // reduce_scale // patch_size[2])
self.patch_embeddings = nn.Conv3d(in_channels=in_channels,
out_channels=in_channels,
kernel_size=patch_size,
stride=patch_size)
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
self.dropout = Dropout(0.1)
def forward(self, x):
if x is None:
return None
x = self.patch_embeddings(x) # (B, hidden. n_patches^(1/2), n_patches^(1/2))
h, w, d = x.shape[-3:]
x = x.flatten(2)
x = x.transpose(-1, -2) # (B, n_patches, hidden)
embeddings = x + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, (h, w, d)
class Reconstruct(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, scale_factor):
super(Reconstruct, self).__init__()
if kernel_size == 3:
padding = 1
else:
padding = 0
self.conv = nn.Conv3d(in_channels, out_channels,kernel_size=kernel_size, padding=padding)
self.norm = nn.BatchNorm3d(out_channels)
self.activation = nn.ReLU(inplace=True)
self.scale_factor = scale_factor
def forward(self, x, shp):
if x is None:
return None
B, n_patch, hidden = x.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
h, w, d = shp
x = x.permute(0, 2, 1)
x = x.contiguous().view(B, hidden, h, w, d)
x = nn.Upsample(scale_factor=self.scale_factor)(x)
out = self.conv(x)
out = self.norm(out)
out = self.activation(out)
return out
class Attention_org(nn.Module):
def __init__(self, KV_size, channel_num, num_heads, attention_dropout_rate):
super(Attention_org, self).__init__()
self.KV_size = KV_size
self.channel_num = channel_num
self.num_attention_heads = num_heads
self.query1 = nn.ModuleList()
self.query2 = nn.ModuleList()
self.query3 = nn.ModuleList()
self.query4 = nn.ModuleList()
self.key = nn.ModuleList()
self.value = nn.ModuleList()
for _ in range(num_heads):
query1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
query2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
query3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
query4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
key = nn.Linear( self.KV_size, self.KV_size, bias=False)
value = nn.Linear(self.KV_size, self.KV_size, bias=False)
self.query1.append(copy.deepcopy(query1))
self.query2.append(copy.deepcopy(query2))
self.query3.append(copy.deepcopy(query3))
self.query4.append(copy.deepcopy(query4))
self.key.append(copy.deepcopy(key))
self.value.append(copy.deepcopy(value))
self.psi = nn.InstanceNorm2d(self.num_attention_heads)
self.softmax = Softmax(dim=3)
self.out1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
self.out2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
self.out3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
self.out4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
self.attn_dropout = Dropout(attention_dropout_rate)
self.proj_dropout = Dropout(attention_dropout_rate)
def forward(self, emb1,emb2,emb3,emb4, emb_all):
multi_head_Q1_list = []
multi_head_Q2_list = []
multi_head_Q3_list = []
multi_head_Q4_list = []
multi_head_K_list = []
multi_head_V_list = []
if emb1 is not None:
for query1 in self.query1:
Q1 = query1(emb1)
multi_head_Q1_list.append(Q1)
if emb2 is not None:
for query2 in self.query2:
Q2 = query2(emb2)
multi_head_Q2_list.append(Q2)
if emb3 is not None:
for query3 in self.query3:
Q3 = query3(emb3)
multi_head_Q3_list.append(Q3)
if emb4 is not None:
for query4 in self.query4:
Q4 = query4(emb4)
multi_head_Q4_list.append(Q4)
for key in self.key:
K = key(emb_all)
multi_head_K_list.append(K)
for value in self.value:
V = value(emb_all)
multi_head_V_list.append(V)
# print(len(multi_head_Q4_list))
multi_head_Q1 = torch.stack(multi_head_Q1_list, dim=1) if emb1 is not None else None
multi_head_Q2 = torch.stack(multi_head_Q2_list, dim=1) if emb2 is not None else None
multi_head_Q3 = torch.stack(multi_head_Q3_list, dim=1) if emb3 is not None else None
multi_head_Q4 = torch.stack(multi_head_Q4_list, dim=1) if emb4 is not None else None
multi_head_K = torch.stack(multi_head_K_list, dim=1)
multi_head_V = torch.stack(multi_head_V_list, dim=1)
multi_head_Q1 = multi_head_Q1.transpose(-1, -2) if emb1 is not None else None
multi_head_Q2 = multi_head_Q2.transpose(-1, -2) if emb2 is not None else None
multi_head_Q3 = multi_head_Q3.transpose(-1, -2) if emb3 is not None else None
multi_head_Q4 = multi_head_Q4.transpose(-1, -2) if emb4 is not None else None
attention_scores1 = torch.matmul(multi_head_Q1, multi_head_K) if emb1 is not None else None
attention_scores2 = torch.matmul(multi_head_Q2, multi_head_K) if emb2 is not None else None
attention_scores3 = torch.matmul(multi_head_Q3, multi_head_K) if emb3 is not None else None
attention_scores4 = torch.matmul(multi_head_Q4, multi_head_K) if emb4 is not None else None
attention_scores1 = attention_scores1 / math.sqrt(self.KV_size) if emb1 is not None else None
attention_scores2 = attention_scores2 / math.sqrt(self.KV_size) if emb2 is not None else None
attention_scores3 = attention_scores3 / math.sqrt(self.KV_size) if emb3 is not None else None
attention_scores4 = attention_scores4 / math.sqrt(self.KV_size) if emb4 is not None else None
attention_probs1 = self.softmax(self.psi(attention_scores1)) if emb1 is not None else None
attention_probs2 = self.softmax(self.psi(attention_scores2)) if emb2 is not None else None
attention_probs3 = self.softmax(self.psi(attention_scores3)) if emb3 is not None else None
attention_probs4 = self.softmax(self.psi(attention_scores4)) if emb4 is not None else None
# print(attention_probs4.size())
attention_probs1 = self.attn_dropout(attention_probs1) if emb1 is not None else None
attention_probs2 = self.attn_dropout(attention_probs2) if emb2 is not None else None
attention_probs3 = self.attn_dropout(attention_probs3) if emb3 is not None else None
attention_probs4 = self.attn_dropout(attention_probs4) if emb4 is not None else None
multi_head_V = multi_head_V.transpose(-1, -2)
context_layer1 = torch.matmul(attention_probs1, multi_head_V) if emb1 is not None else None
context_layer2 = torch.matmul(attention_probs2, multi_head_V) if emb2 is not None else None
context_layer3 = torch.matmul(attention_probs3, multi_head_V) if emb3 is not None else None
context_layer4 = torch.matmul(attention_probs4, multi_head_V) if emb4 is not None else None
context_layer1 = context_layer1.permute(0, 3, 2, 1).contiguous() if emb1 is not None else None
context_layer2 = context_layer2.permute(0, 3, 2, 1).contiguous() if emb2 is not None else None
context_layer3 = context_layer3.permute(0, 3, 2, 1).contiguous() if emb3 is not None else None
context_layer4 = context_layer4.permute(0, 3, 2, 1).contiguous() if emb4 is not None else None
context_layer1 = context_layer1.mean(dim=3) if emb1 is not None else None
context_layer2 = context_layer2.mean(dim=3) if emb2 is not None else None
context_layer3 = context_layer3.mean(dim=3) if emb3 is not None else None
context_layer4 = context_layer4.mean(dim=3) if emb4 is not None else None
O1 = self.out1(context_layer1) if emb1 is not None else None
O2 = self.out2(context_layer2) if emb2 is not None else None
O3 = self.out3(context_layer3) if emb3 is not None else None
O4 = self.out4(context_layer4) if emb4 is not None else None
O1 = self.proj_dropout(O1) if emb1 is not None else None
O2 = self.proj_dropout(O2) if emb2 is not None else None
O3 = self.proj_dropout(O3) if emb3 is not None else None
O4 = self.proj_dropout(O4) if emb4 is not None else None
return O1,O2,O3,O4
class Mlp(nn.Module):
def __init__(self, in_channel, mlp_channel, dropout_rate):
super(Mlp, self).__init__()
self.fc1 = nn.Linear(in_channel, mlp_channel)
self.fc2 = nn.Linear(mlp_channel, in_channel)
self.act_fn = nn.GELU()
self.dropout = Dropout(dropout_rate)
self._init_weights()
def _init_weights(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.normal_(self.fc1.bias, std=1e-6)
nn.init.normal_(self.fc2.bias, std=1e-6)
def forward(self, x):
x = self.fc1(x)
x = self.act_fn(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class Block_ViT(nn.Module):
def __init__(self, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate):
super(Block_ViT, self).__init__()
self.attn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.attn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.attn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.attn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
self.attn_norm = LayerNorm(KV_size,eps=1e-6)
self.channel_attn = Attention_org(KV_size, channel_num, num_heads, attention_dropout_rate)
self.ffn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.ffn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.ffn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.ffn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
self.ffn1 = Mlp(channel_num[0],channel_num[0]*4, mlp_dropout_rate)
self.ffn2 = Mlp(channel_num[1],channel_num[1]*4, mlp_dropout_rate)
self.ffn3 = Mlp(channel_num[2],channel_num[2]*4, mlp_dropout_rate)
self.ffn4 = Mlp(channel_num[3],channel_num[3]*4, mlp_dropout_rate)
def forward(self, emb1,emb2,emb3,emb4):
embcat = []
org1 = emb1
org2 = emb2
org3 = emb3
org4 = emb4
for i in range(4):
var_name = "emb"+str(i+1)
tmp_var = locals()[var_name]
if tmp_var is not None:
embcat.append(tmp_var)
emb_all = torch.cat(embcat,dim=2)
cx1 = self.attn_norm1(emb1) if emb1 is not None else None
cx2 = self.attn_norm2(emb2) if emb2 is not None else None
cx3 = self.attn_norm3(emb3) if emb3 is not None else None
cx4 = self.attn_norm4(emb4) if emb4 is not None else None
emb_all = self.attn_norm(emb_all)
cx1,cx2,cx3,cx4 = self.channel_attn(cx1,cx2,cx3,cx4,emb_all)
cx1 = org1 + cx1 if emb1 is not None else None
cx2 = org2 + cx2 if emb2 is not None else None
cx3 = org3 + cx3 if emb3 is not None else None
cx4 = org4 + cx4 if emb4 is not None else None
org1 = cx1
org2 = cx2
org3 = cx3
org4 = cx4
x1 = self.ffn_norm1(cx1) if emb1 is not None else None
x2 = self.ffn_norm2(cx2) if emb2 is not None else None
x3 = self.ffn_norm3(cx3) if emb3 is not None else None
x4 = self.ffn_norm4(cx4) if emb4 is not None else None
x1 = self.ffn1(x1) if emb1 is not None else None
x2 = self.ffn2(x2) if emb2 is not None else None
x3 = self.ffn3(x3) if emb3 is not None else None
x4 = self.ffn4(x4) if emb4 is not None else None
x1 = x1 + org1 if emb1 is not None else None
x2 = x2 + org2 if emb2 is not None else None
x3 = x3 + org3 if emb3 is not None else None
x4 = x4 + org4 if emb4 is not None else None
return x1, x2, x3, x4
class Encoder(nn.Module):
def __init__(self, num_layers, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate):
super(Encoder, self).__init__()
self.layer = nn.ModuleList()
self.encoder_norm1 = LayerNorm(channel_num[0],eps=1e-6)
self.encoder_norm2 = LayerNorm(channel_num[1],eps=1e-6)
self.encoder_norm3 = LayerNorm(channel_num[2],eps=1e-6)
self.encoder_norm4 = LayerNorm(channel_num[3],eps=1e-6)
for _ in range(num_layers):
layer = Block_ViT(KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate)
self.layer.append(copy.deepcopy(layer))
def forward(self, emb1,emb2,emb3,emb4):
for layer_block in self.layer:
emb1,emb2,emb3,emb4 = layer_block(emb1,emb2,emb3,emb4)
emb1 = self.encoder_norm1(emb1) if emb1 is not None else None
emb2 = self.encoder_norm2(emb2) if emb2 is not None else None
emb3 = self.encoder_norm3(emb3) if emb3 is not None else None
emb4 = self.encoder_norm4(emb4) if emb4 is not None else None
return emb1,emb2,emb3,emb4
class ChannelTransformer(nn.Module):
def __init__(self, img_size, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate, channel_num=[64, 128, 256, 512], patchSize=[32, 16, 8, 4]):
super().__init__()
self.patchSize_1 = patchSize[0]
self.patchSize_2 = patchSize[1]
self.patchSize_3 = patchSize[2]
self.patchSize_4 = patchSize[3]
self.embeddings_1 = Channel_Embeddings(self.patchSize_1, img_size=img_size, reduce_scale=1, in_channels=channel_num[0])
self.embeddings_2 = Channel_Embeddings(self.patchSize_2, img_size=img_size, reduce_scale=2, in_channels=channel_num[1])
self.embeddings_3 = Channel_Embeddings(self.patchSize_3, img_size=img_size, reduce_scale=4, in_channels=channel_num[2])
self.embeddings_4 = Channel_Embeddings(self.patchSize_4, img_size=img_size, reduce_scale=8, in_channels=channel_num[3])
self.encoder = Encoder(num_layers, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate)
self.reconstruct_1 = Reconstruct(channel_num[0], channel_num[0], kernel_size=1,scale_factor=_triple(self.patchSize_1))
self.reconstruct_2 = Reconstruct(channel_num[1], channel_num[1], kernel_size=1,scale_factor=_triple(self.patchSize_2))
self.reconstruct_3 = Reconstruct(channel_num[2], channel_num[2], kernel_size=1,scale_factor=_triple(self.patchSize_3))
self.reconstruct_4 = Reconstruct(channel_num[3], channel_num[3], kernel_size=1,scale_factor=_triple(self.patchSize_4))
def forward(self, en1, en2, en3, en4):
emb1, shp1 = self.embeddings_1(en1)
emb2, shp2 = self.embeddings_2(en2)
emb3, shp3 = self.embeddings_3(en3)
emb4, shp4 = self.embeddings_4(en4)
encoded1, encoded2, encoded3, encoded4 = self.encoder(emb1,emb2,emb3,emb4) # (B, n_patch, hidden)
x1 = self.reconstruct_1(encoded1, shp1) if en1 is not None else None
x2 = self.reconstruct_2(encoded2, shp2) if en2 is not None else None
x3 = self.reconstruct_3(encoded3, shp3) if en3 is not None else None
x4 = self.reconstruct_4(encoded4, shp4) if en4 is not None else None
x1 = x1 + en1 if en1 is not None else None
x2 = x2 + en2 if en2 is not None else None
x3 = x3 + en3 if en3 is not None else None
x4 = x4 + en4 if en4 is not None else None
return x1, x2, x3, x4 |