File size: 21,530 Bytes
951b7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# -*- coding: utf-8 -*-
# @Time    : 2024/2/17 11:06
# @Author  : Haonan Wang
# @File    : UCTransNet.py
# @Software: PyCharm



import torch.nn.functional as F
import copy
import math
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, LayerNorm
from torch.nn.modules.utils import _pair, _triple



def get_activation(activation_type):
    activation_type = activation_type.lower()
    if hasattr(nn, activation_type):
        return getattr(nn, activation_type)()
    else:
        return nn.ReLU()

def _make_nConv(in_channels, out_channels, nb_Conv, activation='ReLU'):
    layers = []
    layers.append(ConvBatchNorm(in_channels, out_channels, activation))

    for _ in range(nb_Conv - 1):
        layers.append(ConvBatchNorm(out_channels, out_channels, activation))
    return nn.Sequential(*layers)

class ConvBatchNorm(nn.Module):
    """(convolution => [BN] => ReLU)"""

    def __init__(self, in_channels, out_channels, activation='ReLU'):
        super(ConvBatchNorm, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels,
                              kernel_size=3, padding=1)
        self.norm = nn.BatchNorm3d(out_channels)
        self.activation = get_activation(activation)

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        return self.activation(out)

class DownBlock(nn.Module):
    """Downscaling with maxpool convolution"""
    def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
        super(DownBlock, self).__init__()
        self.maxpool = nn.MaxPool3d(2)
        self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)

    def forward(self, x):
        out = self.maxpool(x)
        return self.nConvs(out)

class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)

class CCA(nn.Module):
    """
    CCA Block
    """
    def __init__(self, F_g, F_x):
        super().__init__()
        self.mlp_x = nn.Sequential(
            Flatten(),
            nn.Linear(F_x, F_x))
        self.mlp_g = nn.Sequential(
            Flatten(),
            nn.Linear(F_g, F_x))
        self.relu = nn.ReLU(inplace=True)

    def forward(self, g, x):
        # channel-wise attention
        avg_pool_x = F.avg_pool3d( x, (x.size(2), x.size(3), x.size(4)), stride=(x.size(2), x.size(3), x.size(4)))
        channel_att_x = self.mlp_x(avg_pool_x)
        avg_pool_g = F.avg_pool3d( g, (g.size(2), g.size(3), g.size(4)), stride=(g.size(2), g.size(3), g.size(4)))
        channel_att_g = self.mlp_g(avg_pool_g)
        channel_att_sum = (channel_att_x + channel_att_g)/2.0
        scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).unsqueeze(4).expand_as(x)
        x_after_channel = x * scale
        out = self.relu(x_after_channel)
        return out

class UpBlock_attention(nn.Module):
    def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
        super().__init__()
        self.up = nn.Upsample(scale_factor=2)
        self.coatt = CCA(F_g=in_channels//2, F_x=in_channels//2)
        self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)

    def forward(self, x, skip_x):
        up = self.up(x)
        skip_x_att = self.coatt(g=up, x=skip_x)
        x = torch.cat([skip_x_att, up], dim=1)  # dim 1 is the channel dimension
        return self.nConvs(x)

class UCTransNet(nn.Module):
    def __init__(self, in_channels, out_channels, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate,  feature_size, img_size, patch_sizes):
        super().__init__()
        self.inc = ConvBatchNorm(in_channels, feature_size)
        self.down1 = DownBlock(feature_size, feature_size*2, nb_Conv=2)
        self.down2 = DownBlock(feature_size*2, feature_size*4, nb_Conv=2)
        self.down3 = DownBlock(feature_size*4, feature_size*8, nb_Conv=2)
        self.down4 = DownBlock(feature_size*8, feature_size*8, nb_Conv=2)
        self.mtc = ChannelTransformer(img_size, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate,
                                      channel_num=[feature_size, feature_size*2, feature_size*4, feature_size*8],
                                      patchSize=patch_sizes)
        self.up4 = UpBlock_attention(feature_size*16, feature_size*4, nb_Conv=2)
        self.up3 = UpBlock_attention(feature_size*8, feature_size*2, nb_Conv=2)
        self.up2 = UpBlock_attention(feature_size*4, feature_size, nb_Conv=2)
        self.up1 = UpBlock_attention(feature_size*2, feature_size, nb_Conv=2)
        self.outc = nn.Conv3d(feature_size, out_channels, kernel_size=(1, 1, 1), stride=(1, 1, 1))

    def forward(self, x):
        x = x.float()
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x1,x2,x3,x4 = self.mtc(x1,x2,x3,x4)
        x = self.up4(x5, x4)
        x = self.up3(x, x3)
        x = self.up2(x, x2)
        x = self.up1(x, x1)

        logits = self.outc(x) # if nusing BCEWithLogitsLoss or class>1

        return logits









class Channel_Embeddings(nn.Module):
    """Construct the embeddings from patch, position embeddings.
    """
    def __init__(self, patchsize, img_size, in_channels, reduce_scale):
        super().__init__()
        patch_size = _triple(patchsize)
        n_patches = (img_size[0] // reduce_scale // patch_size[0]) * (img_size[1] // reduce_scale // patch_size[1]) * (img_size[2] // reduce_scale // patch_size[2])

        self.patch_embeddings = nn.Conv3d(in_channels=in_channels,
                                       out_channels=in_channels,
                                       kernel_size=patch_size,
                                       stride=patch_size)
        self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
        self.dropout = Dropout(0.1)

    def forward(self, x):
        if x is None:
            return None
        x = self.patch_embeddings(x)  # (B, hidden. n_patches^(1/2), n_patches^(1/2))
        h, w, d = x.shape[-3:]
        x = x.flatten(2)
        x = x.transpose(-1, -2)  # (B, n_patches, hidden)
        embeddings = x + self.position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings, (h, w, d)

class Reconstruct(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, scale_factor):
        super(Reconstruct, self).__init__()
        if kernel_size == 3:
            padding = 1
        else:
            padding = 0
        self.conv = nn.Conv3d(in_channels, out_channels,kernel_size=kernel_size, padding=padding)
        self.norm = nn.BatchNorm3d(out_channels)
        self.activation = nn.ReLU(inplace=True)
        self.scale_factor = scale_factor

    def forward(self, x, shp):
        if x is None:
            return None

        B, n_patch, hidden = x.size()  # reshape from (B, n_patch, hidden) to (B, h, w, hidden)
        h, w, d = shp
        x = x.permute(0, 2, 1)
        x = x.contiguous().view(B, hidden, h, w, d)
        x = nn.Upsample(scale_factor=self.scale_factor)(x)

        out = self.conv(x)
        out = self.norm(out)
        out = self.activation(out)
        return out

class Attention_org(nn.Module):
    def __init__(self, KV_size, channel_num, num_heads, attention_dropout_rate):
        super(Attention_org, self).__init__()
        self.KV_size = KV_size
        self.channel_num = channel_num
        self.num_attention_heads = num_heads

        self.query1 = nn.ModuleList()
        self.query2 = nn.ModuleList()
        self.query3 = nn.ModuleList()
        self.query4 = nn.ModuleList()
        self.key = nn.ModuleList()
        self.value = nn.ModuleList()

        for _ in range(num_heads):
            query1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
            query2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
            query3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
            query4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
            key = nn.Linear( self.KV_size,  self.KV_size, bias=False)
            value = nn.Linear(self.KV_size,  self.KV_size, bias=False)
            self.query1.append(copy.deepcopy(query1))
            self.query2.append(copy.deepcopy(query2))
            self.query3.append(copy.deepcopy(query3))
            self.query4.append(copy.deepcopy(query4))
            self.key.append(copy.deepcopy(key))
            self.value.append(copy.deepcopy(value))
        self.psi = nn.InstanceNorm2d(self.num_attention_heads)
        self.softmax = Softmax(dim=3)
        self.out1 = nn.Linear(channel_num[0], channel_num[0], bias=False)
        self.out2 = nn.Linear(channel_num[1], channel_num[1], bias=False)
        self.out3 = nn.Linear(channel_num[2], channel_num[2], bias=False)
        self.out4 = nn.Linear(channel_num[3], channel_num[3], bias=False)
        self.attn_dropout = Dropout(attention_dropout_rate)
        self.proj_dropout = Dropout(attention_dropout_rate)



    def forward(self, emb1,emb2,emb3,emb4, emb_all):
        multi_head_Q1_list = []
        multi_head_Q2_list = []
        multi_head_Q3_list = []
        multi_head_Q4_list = []
        multi_head_K_list = []
        multi_head_V_list = []
        if emb1 is not None:
            for query1 in self.query1:
                Q1 = query1(emb1)
                multi_head_Q1_list.append(Q1)
        if emb2 is not None:
            for query2 in self.query2:
                Q2 = query2(emb2)
                multi_head_Q2_list.append(Q2)
        if emb3 is not None:
            for query3 in self.query3:
                Q3 = query3(emb3)
                multi_head_Q3_list.append(Q3)
        if emb4 is not None:
            for query4 in self.query4:
                Q4 = query4(emb4)
                multi_head_Q4_list.append(Q4)
        for key in self.key:
            K = key(emb_all)
            multi_head_K_list.append(K)
        for value in self.value:
            V = value(emb_all)
            multi_head_V_list.append(V)
        # print(len(multi_head_Q4_list))

        multi_head_Q1 = torch.stack(multi_head_Q1_list, dim=1) if emb1 is not None else None
        multi_head_Q2 = torch.stack(multi_head_Q2_list, dim=1) if emb2 is not None else None
        multi_head_Q3 = torch.stack(multi_head_Q3_list, dim=1) if emb3 is not None else None
        multi_head_Q4 = torch.stack(multi_head_Q4_list, dim=1) if emb4 is not None else None
        multi_head_K = torch.stack(multi_head_K_list, dim=1)
        multi_head_V = torch.stack(multi_head_V_list, dim=1)

        multi_head_Q1 = multi_head_Q1.transpose(-1, -2) if emb1 is not None else None
        multi_head_Q2 = multi_head_Q2.transpose(-1, -2) if emb2 is not None else None
        multi_head_Q3 = multi_head_Q3.transpose(-1, -2) if emb3 is not None else None
        multi_head_Q4 = multi_head_Q4.transpose(-1, -2) if emb4 is not None else None

        attention_scores1 = torch.matmul(multi_head_Q1, multi_head_K) if emb1 is not None else None
        attention_scores2 = torch.matmul(multi_head_Q2, multi_head_K) if emb2 is not None else None
        attention_scores3 = torch.matmul(multi_head_Q3, multi_head_K) if emb3 is not None else None
        attention_scores4 = torch.matmul(multi_head_Q4, multi_head_K) if emb4 is not None else None

        attention_scores1 = attention_scores1 / math.sqrt(self.KV_size) if emb1 is not None else None
        attention_scores2 = attention_scores2 / math.sqrt(self.KV_size) if emb2 is not None else None
        attention_scores3 = attention_scores3 / math.sqrt(self.KV_size) if emb3 is not None else None
        attention_scores4 = attention_scores4 / math.sqrt(self.KV_size) if emb4 is not None else None

        attention_probs1 = self.softmax(self.psi(attention_scores1)) if emb1 is not None else None
        attention_probs2 = self.softmax(self.psi(attention_scores2)) if emb2 is not None else None
        attention_probs3 = self.softmax(self.psi(attention_scores3)) if emb3 is not None else None
        attention_probs4 = self.softmax(self.psi(attention_scores4)) if emb4 is not None else None
        # print(attention_probs4.size())

        attention_probs1 = self.attn_dropout(attention_probs1) if emb1 is not None else None
        attention_probs2 = self.attn_dropout(attention_probs2) if emb2 is not None else None
        attention_probs3 = self.attn_dropout(attention_probs3) if emb3 is not None else None
        attention_probs4 = self.attn_dropout(attention_probs4) if emb4 is not None else None

        multi_head_V = multi_head_V.transpose(-1, -2)
        context_layer1 = torch.matmul(attention_probs1, multi_head_V) if emb1 is not None else None
        context_layer2 = torch.matmul(attention_probs2, multi_head_V) if emb2 is not None else None
        context_layer3 = torch.matmul(attention_probs3, multi_head_V) if emb3 is not None else None
        context_layer4 = torch.matmul(attention_probs4, multi_head_V) if emb4 is not None else None

        context_layer1 = context_layer1.permute(0, 3, 2, 1).contiguous() if emb1 is not None else None
        context_layer2 = context_layer2.permute(0, 3, 2, 1).contiguous() if emb2 is not None else None
        context_layer3 = context_layer3.permute(0, 3, 2, 1).contiguous() if emb3 is not None else None
        context_layer4 = context_layer4.permute(0, 3, 2, 1).contiguous() if emb4 is not None else None
        context_layer1 = context_layer1.mean(dim=3) if emb1 is not None else None
        context_layer2 = context_layer2.mean(dim=3) if emb2 is not None else None
        context_layer3 = context_layer3.mean(dim=3) if emb3 is not None else None
        context_layer4 = context_layer4.mean(dim=3) if emb4 is not None else None

        O1 = self.out1(context_layer1) if emb1 is not None else None
        O2 = self.out2(context_layer2) if emb2 is not None else None
        O3 = self.out3(context_layer3) if emb3 is not None else None
        O4 = self.out4(context_layer4) if emb4 is not None else None
        O1 = self.proj_dropout(O1) if emb1 is not None else None
        O2 = self.proj_dropout(O2) if emb2 is not None else None
        O3 = self.proj_dropout(O3) if emb3 is not None else None
        O4 = self.proj_dropout(O4) if emb4 is not None else None
        return O1,O2,O3,O4




class Mlp(nn.Module):
    def __init__(self, in_channel, mlp_channel, dropout_rate):
        super(Mlp, self).__init__()
        self.fc1 = nn.Linear(in_channel, mlp_channel)
        self.fc2 = nn.Linear(mlp_channel, in_channel)
        self.act_fn = nn.GELU()
        self.dropout = Dropout(dropout_rate)
        self._init_weights()

    def _init_weights(self):
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.xavier_uniform_(self.fc2.weight)
        nn.init.normal_(self.fc1.bias, std=1e-6)
        nn.init.normal_(self.fc2.bias, std=1e-6)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x

class Block_ViT(nn.Module):
    def __init__(self, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate):
        super(Block_ViT, self).__init__()
        self.attn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
        self.attn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
        self.attn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
        self.attn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
        self.attn_norm =  LayerNorm(KV_size,eps=1e-6)
        self.channel_attn = Attention_org(KV_size, channel_num, num_heads, attention_dropout_rate)

        self.ffn_norm1 = LayerNorm(channel_num[0],eps=1e-6)
        self.ffn_norm2 = LayerNorm(channel_num[1],eps=1e-6)
        self.ffn_norm3 = LayerNorm(channel_num[2],eps=1e-6)
        self.ffn_norm4 = LayerNorm(channel_num[3],eps=1e-6)
        self.ffn1 = Mlp(channel_num[0],channel_num[0]*4, mlp_dropout_rate)
        self.ffn2 = Mlp(channel_num[1],channel_num[1]*4, mlp_dropout_rate)
        self.ffn3 = Mlp(channel_num[2],channel_num[2]*4, mlp_dropout_rate)
        self.ffn4 = Mlp(channel_num[3],channel_num[3]*4, mlp_dropout_rate)


    def forward(self, emb1,emb2,emb3,emb4):
        embcat = []
        org1 = emb1
        org2 = emb2
        org3 = emb3
        org4 = emb4
        for i in range(4):
            var_name = "emb"+str(i+1)
            tmp_var = locals()[var_name]
            if tmp_var is not None:
                embcat.append(tmp_var)

        emb_all = torch.cat(embcat,dim=2)
        cx1 = self.attn_norm1(emb1) if emb1 is not None else None
        cx2 = self.attn_norm2(emb2) if emb2 is not None else None
        cx3 = self.attn_norm3(emb3) if emb3 is not None else None
        cx4 = self.attn_norm4(emb4) if emb4 is not None else None
        emb_all = self.attn_norm(emb_all)
        cx1,cx2,cx3,cx4 = self.channel_attn(cx1,cx2,cx3,cx4,emb_all)
        cx1 = org1 + cx1 if emb1 is not None else None
        cx2 = org2 + cx2 if emb2 is not None else None
        cx3 = org3 + cx3 if emb3 is not None else None
        cx4 = org4 + cx4 if emb4 is not None else None

        org1 = cx1
        org2 = cx2
        org3 = cx3
        org4 = cx4
        x1 = self.ffn_norm1(cx1) if emb1 is not None else None
        x2 = self.ffn_norm2(cx2) if emb2 is not None else None
        x3 = self.ffn_norm3(cx3) if emb3 is not None else None
        x4 = self.ffn_norm4(cx4) if emb4 is not None else None
        x1 = self.ffn1(x1) if emb1 is not None else None
        x2 = self.ffn2(x2) if emb2 is not None else None
        x3 = self.ffn3(x3) if emb3 is not None else None
        x4 = self.ffn4(x4) if emb4 is not None else None
        x1 = x1 + org1 if emb1 is not None else None
        x2 = x2 + org2 if emb2 is not None else None
        x3 = x3 + org3 if emb3 is not None else None
        x4 = x4 + org4 if emb4 is not None else None

        return x1, x2, x3, x4


class Encoder(nn.Module):
    def __init__(self, num_layers, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate):
        super(Encoder, self).__init__()
        self.layer = nn.ModuleList()
        self.encoder_norm1 = LayerNorm(channel_num[0],eps=1e-6)
        self.encoder_norm2 = LayerNorm(channel_num[1],eps=1e-6)
        self.encoder_norm3 = LayerNorm(channel_num[2],eps=1e-6)
        self.encoder_norm4 = LayerNorm(channel_num[3],eps=1e-6)
        for _ in range(num_layers):
            layer = Block_ViT(KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate)
            self.layer.append(copy.deepcopy(layer))

    def forward(self, emb1,emb2,emb3,emb4):
        for layer_block in self.layer:
            emb1,emb2,emb3,emb4 = layer_block(emb1,emb2,emb3,emb4)
        emb1 = self.encoder_norm1(emb1) if emb1 is not None else None
        emb2 = self.encoder_norm2(emb2) if emb2 is not None else None
        emb3 = self.encoder_norm3(emb3) if emb3 is not None else None
        emb4 = self.encoder_norm4(emb4) if emb4 is not None else None
        return emb1,emb2,emb3,emb4


class ChannelTransformer(nn.Module):
    def __init__(self, img_size, num_layers, KV_size, num_heads, attention_dropout_rate, mlp_dropout_rate, channel_num=[64, 128, 256, 512], patchSize=[32, 16, 8, 4]):
        super().__init__()

        self.patchSize_1 = patchSize[0]
        self.patchSize_2 = patchSize[1]
        self.patchSize_3 = patchSize[2]
        self.patchSize_4 = patchSize[3]
        self.embeddings_1 = Channel_Embeddings(self.patchSize_1, img_size=img_size, reduce_scale=1, in_channels=channel_num[0])
        self.embeddings_2 = Channel_Embeddings(self.patchSize_2, img_size=img_size, reduce_scale=2, in_channels=channel_num[1])
        self.embeddings_3 = Channel_Embeddings(self.patchSize_3, img_size=img_size, reduce_scale=4, in_channels=channel_num[2])
        self.embeddings_4 = Channel_Embeddings(self.patchSize_4, img_size=img_size, reduce_scale=8, in_channels=channel_num[3])
        self.encoder = Encoder(num_layers, KV_size, channel_num, num_heads, attention_dropout_rate, mlp_dropout_rate)

        self.reconstruct_1 = Reconstruct(channel_num[0], channel_num[0], kernel_size=1,scale_factor=_triple(self.patchSize_1))
        self.reconstruct_2 = Reconstruct(channel_num[1], channel_num[1], kernel_size=1,scale_factor=_triple(self.patchSize_2))
        self.reconstruct_3 = Reconstruct(channel_num[2], channel_num[2], kernel_size=1,scale_factor=_triple(self.patchSize_3))
        self.reconstruct_4 = Reconstruct(channel_num[3], channel_num[3], kernel_size=1,scale_factor=_triple(self.patchSize_4))

    def forward(self, en1, en2, en3, en4):

        emb1, shp1 = self.embeddings_1(en1)
        emb2, shp2 = self.embeddings_2(en2)
        emb3, shp3 = self.embeddings_3(en3)
        emb4, shp4 = self.embeddings_4(en4)

        encoded1, encoded2, encoded3, encoded4 = self.encoder(emb1,emb2,emb3,emb4)  # (B, n_patch, hidden)
        x1 = self.reconstruct_1(encoded1, shp1) if en1 is not None else None
        x2 = self.reconstruct_2(encoded2, shp2) if en2 is not None else None
        x3 = self.reconstruct_3(encoded3, shp3) if en3 is not None else None
        x4 = self.reconstruct_4(encoded4, shp4) if en4 is not None else None

        x1 = x1 + en1 if en1 is not None else None
        x2 = x2 + en2 if en2 is not None else None
        x3 = x3 + en3 if en3 is not None else None
        x4 = x4 + en4 if en4 is not None else None

        return x1, x2, x3, x4