Added model card
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: image-classification
|
4 |
+
---
|
5 |
+
|
6 |
+
ONNX port of [sentence-transformers/clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32) text classification and similarity searches.
|
7 |
+
|
8 |
+
### Usage
|
9 |
+
|
10 |
+
Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed).
|
11 |
+
|
12 |
+
```py
|
13 |
+
from fastembed import TextEmbedding
|
14 |
+
|
15 |
+
documents = [
|
16 |
+
"You should stay, study and sprint.",
|
17 |
+
"History can only prepare us to be surprised yet again.",
|
18 |
+
]
|
19 |
+
|
20 |
+
model = TextEmbedding(model_name="Qdrant/clip-ViT-B-32-text")
|
21 |
+
embeddings = list(model.embed(documents))
|
22 |
+
|
23 |
+
# [
|
24 |
+
# array([1.57889184e-02, -2.21896712e-02, -1.40235685e-02, -2.36918423e-02, ...],
|
25 |
+
# dtype=float32)
|
26 |
+
# ]
|
27 |
+
```
|