Qingyun commited on
Commit
dd85d86
·
verified ·
1 Parent(s): a19b180

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -2
README.md CHANGED
@@ -34,12 +34,38 @@ tags:
34
  - GitHub Repo: https://github.com/Li-Qingyun/mllm-mmrotate
35
  - HuggingFace Page: https://huggingface.co/collections/Qingyun/lmmrotate-6780cabaf49c4e705023b8df
36
 
37
- This repo hosts the checkpoint of Florence-2-larged trained on DOTA-v1.0 with LMMRotate.
38
 
39
  LMMRotate is a technical practice to fine-tune Large Multimodal language Models for oriented object detection as in MMRotate and hosts the official implementation of the paper: A Simple Aerial Detection Baseline of Multimodal Language Models.
40
 
41
  <img src="https://github.com/user-attachments/assets/d34e4c0c-9e04-446e-a511-2e7005e32074" alt="framework" width="100%" />
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ## Detection Performance
44
 
45
- ![](https://github.com/user-attachments/assets/f61edcd2-1dee-4bdb-8a1e-c8dd1cf163a1)
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  - GitHub Repo: https://github.com/Li-Qingyun/mllm-mmrotate
35
  - HuggingFace Page: https://huggingface.co/collections/Qingyun/lmmrotate-6780cabaf49c4e705023b8df
36
 
37
+ This repo hosts the checkpoint of Florence-2-larged trained on DOTA-v1.0 with LMMRotate. More checkpoint for aerial detection with LMMRotate in [our paper](https://arxiv.org/abs/2501.09720) can be found in [this repo](https://huggingface.co/Qingyun/Florence-2-models-lmmrotate).
38
 
39
  LMMRotate is a technical practice to fine-tune Large Multimodal language Models for oriented object detection as in MMRotate and hosts the official implementation of the paper: A Simple Aerial Detection Baseline of Multimodal Language Models.
40
 
41
  <img src="https://github.com/user-attachments/assets/d34e4c0c-9e04-446e-a511-2e7005e32074" alt="framework" width="100%" />
42
 
43
+ ## Downloading Guide
44
+
45
+ You can download with your web browser on [the file page](https://huggingface.co/datasets/Qingyun/Florence-2-models-lmmrotate/tree/main).
46
+
47
+ We recommand downloading in terminal using huggingface-cli (`pip install --upgrade huggingface_cli`). You can refer to [the document](https://huggingface.co/docs/huggingface_hub/guides/download) for more usages.
48
+
49
+ ```
50
+ # Set Huggingface Mirror for Chinese users (if required):
51
+ export HF_ENDPOINT=https://hf-mirror.com
52
+ # Download a certain checkpoint:
53
+ huggingface-cli download Qingyun/Florence-2-models-lmmrotate <checkpoint_folder_name> --repo-type model --local-dir checkpoint/
54
+ # If any error (such as network error) interrupts the downloading, you just need to execute the same command, the latest huggingface_hub will resume downloading.
55
+ ```
56
+
57
  ## Detection Performance
58
 
59
+ ![](https://github.com/user-attachments/assets/f61edcd2-1dee-4bdb-8a1e-c8dd1cf163a1)
60
+
61
+ ## Cite
62
+
63
+ LMMRotate paper:
64
+ ```
65
+ @article{li2025lmmrotate,
66
+ title={A Simple Aerial Detection Baseline of Multimodal Language Models},
67
+ author={Li, Qingyun and Chen, Yushi and Shu, Xinya and Chen, Dong and He, Xin and Yu Yi and Yang, Xue },
68
+ journal={arXiv preprint arXiv:2501.09720},
69
+ year={2025}
70
+ }
71
+ ```