--- license: mit datasets: - Qingyun/lmmrotate-sft-data language: - en base_model: - microsoft/Florence-2-large pipeline_tag: image-text-to-text tags: - aerial - geoscience - remotesensing ---

LMMRotate 🎮: A Simple Aerial Detection Baseline of Multimodal Language Models

Qingyun LiYushi ChenXinya ShuDong ChenXin HeYi YuXue Yang

If you find our work helpful, please consider giving us a ⭐!

- ArXiv Paper: https://arxiv.org/abs/2501.09720 - GitHub Repo: https://github.com/Li-Qingyun/mllm-mmrotate - HuggingFace Page: https://huggingface.co/collections/Qingyun/lmmrotate-6780cabaf49c4e705023b8df This repo hosts the checkpoint of Florence-2-larged trained on DOTA-v1.0 with LMMRotate. More checkpoint for aerial detection with LMMRotate in [our paper](https://arxiv.org/abs/2501.09720) can be found in [this repo](https://huggingface.co/Qingyun/Florence-2-models-lmmrotate). LMMRotate is a technical practice to fine-tune Large Multimodal language Models for oriented object detection as in MMRotate and hosts the official implementation of the paper: A Simple Aerial Detection Baseline of Multimodal Language Models. framework ## Downloading Guide You can download with your web browser on [the file page](https://huggingface.co/datasets/Qingyun/Florence-2-models-lmmrotate/tree/main). We recommand downloading in terminal using huggingface-cli (`pip install --upgrade huggingface_cli`). You can refer to [the document](https://huggingface.co/docs/huggingface_hub/guides/download) for more usages. ``` # Set Huggingface Mirror for Chinese users (if required): export HF_ENDPOINT=https://hf-mirror.com # Download a certain checkpoint: huggingface-cli download Qingyun/Florence-2-models-lmmrotate --repo-type model --local-dir checkpoint/ # If any error (such as network error) interrupts the downloading, you just need to execute the same command, the latest huggingface_hub will resume downloading. ``` ## Detection Performance ![](https://github.com/user-attachments/assets/f61edcd2-1dee-4bdb-8a1e-c8dd1cf163a1) ## Cite LMMRotate paper: ``` @article{li2025lmmrotate, title={A Simple Aerial Detection Baseline of Multimodal Language Models}, author={Li, Qingyun and Chen, Yushi and Shu, Xinya and Chen, Dong and He, Xin and Yu Yi and Yang, Xue }, journal={arXiv preprint arXiv:2501.09720}, year={2025} } ```