File size: 3,586 Bytes
e551c77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: cc-by-nc-4.0
tags:
- conversational
- mixtral
- merge
- mergekit
---
<img src="https://files.catbox.moe/zdxyzv.png" width="400"/>
## TeTO-MS-8x7b-iMat-GGUF
<i>Weighted quants were made using the full precision fp16 model and groups_merged_enhancedV3.</i>
<u><b>Te</b></u>soro + <u><b>T</b></u>yphon + <u><b>O</b></u>penGPT
Presenting a Model Stock experiment combining the unique strengths from the following 8x7b Mixtral models:
* Tess-2.0-Mixtral-8x7B-v0.2 / [migtissera](https://huggingface.co/migtissera) / General Purpose
* Typhon-Mixtral-v1 / [Sao10K](https://huggingface.co/Sao10K) / Creative & Story Completion
* Open_Gpt4_8x7B_v0.2 / [rombodawg](https://huggingface.co/rombodawg) / Conversational
# Recommended Template
* Basic: Alpaca Format
* Advanced: See context/instruct/sampler settings in [our new Recommended Settings repo](https://huggingface.co/Quant-Cartel/Recommended-Settings/tree/main/Teto-MS-8x7b).
* Huge shout out to [rAIfle](https://huggingface.co/rAIfle) for his original work on the Wizard 8x22b templates which were modified for this model.
<H2>Methodology</H2>
> [I]nnovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model
<i> (From [arXiv:2403.19522](https://arxiv.org/pdf/2403.19522))</i>
* Methodology and merging process was based on the following paper - [Model Stock: All we need is just a few fine-tuned models](https://arxiv.org/abs/2403.19522)
* Initial model selection was based on top performing models of Mixtral architecture covering a variety of use cases and skills
* Base model (Mixtral Instruct 8x7b v0.1) was chosen after outperforming two other potential base models in terms of MMLU benchmark performance.
# Output
<img src="https://files.catbox.moe/bw97yg.PNG" width="400"/>
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using Mixtral-8x7B-v0.1-Instruct as a base.
### Models Merged
The following models were included in the merge:
* migtissera_Tess-2.0-Mixtral-8x7B-v0.2
* rombodawg_Open_Gpt4_8x7B_v0.2
* Sao10K_Typhon-Mixtral-v1
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: models/migtissera_Tess-2.0-Mixtral-8x7B-v0.2
- model: models/Sao10K_Typhon-Mixtral-v1
- model: models/rombodawg_Open_Gpt4_8x7B_v0.2
merge_method: model_stock
base_model: models/Mixtral-8x7B-v0.1-Instruct
dtype: float16
```
## Appendix - Llama.cpp MMLU Benchmark Results*
<i>These results were calculated via perplexity.exe from llama.cpp using the following params:</i>
`.\perplexity -m .\models\TeTO-8x7b-MS-v0.03\TeTO-MS-8x7b-Q6_K.gguf -bf .\evaluations\mmlu-test.bin --multiple-choice -c 8192 -t 23 -ngl 200`
```
* V0.01 (4 model / Mixtral Base):
Final result: 43.3049 +/- 0.4196
Random chance: 25.0000 +/- 0.3667
* V0.02 (3 model / Tess Mixtral Base):
Final result: 43.8356 +/- 0.4202
Random chance: 25.0000 +/- 0.3667
* V0.03 (4 model / Mixtral Instruct Base):
Final result: 45.7004 +/- 0.4219
Random chance: 25.0000 +/- 0.3667
```
*Please be advised metrics above are not representative of final HF benchmark scores for reasons given [here](https://github.com/ggerganov/llama.cpp/pull/5047) |