---
library_name: transformers
license: gemma
base_model: IntervitensInc/gemma-2-9b-chatml
tags:
- generated_from_trainer
model-index:
- name: outputs/out
results: []
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Dante_9B-GGUF
This is quantized version of [FourOhFour/Dante_9B](https://huggingface.co/FourOhFour/Dante_9B) created using llama.cpp
# Original Model Card
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: IntervitensInc/gemma-2-9b-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: FourOhFour/Instruct_Phase
type: sharegpt
conversation: chatml
chat_template: chatml
val_set_size: 0.0025
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: false
liger_swiglu: true
liger_fused_linear_cross_entropy: false
wandb_project: chatml9B
wandb_entity:
wandb_watch:
wandb_name: chatml9B
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000008
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
pad_token:
```
# outputs/out
This model is a fine-tuned version of [IntervitensInc/gemma-2-9b-chatml](https://huggingface.co/IntervitensInc/gemma-2-9b-chatml) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 42
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0841 | 0.0048 | 1 | 1.0069 |
| 0.7835 | 0.2518 | 53 | 0.7502 |
| 0.7594 | 0.5036 | 106 | 0.7305 |
| 0.7348 | 0.7555 | 159 | 0.7231 |
| 0.6312 | 1.0055 | 212 | 0.7228 |
| 0.6077 | 1.2574 | 265 | 0.7362 |
| 0.607 | 1.5092 | 318 | 0.7328 |
| 0.5734 | 1.7611 | 371 | 0.7320 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0