File size: 2,271 Bytes
b4d93cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

---

tags:
- merge
- mergekit
- lazymergekit
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- mlabonne/ChimeraLlama-3-8B-v3
base_model:
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- mlabonne/ChimeraLlama-3-8B-v3
license: mit
pipeline_tag: text-generation

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/KingNish-Llama3-8b-GGUF
This is quantized version of [KingNish/KingNish-Llama3-8b](https://huggingface.co/KingNish/KingNish-Llama3-8b) created using llama.cpp

# Original Model Card


# KingNish-Llama3-8b

KingNish-Llama3-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct)
* [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3)

## 🧩 Configuration

```yaml
models:
  - model: nbeerbower/llama-3-gutenberg-8B
    # No parameters necessary for base model
  - model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
    parameters:
      density: 0.6
      weight: 0.4
  - model: mlabonne/ChimeraLlama-3-8B-v3
    parameters:
      density: 0.65
      weight: 0.3
merge_method: dare_ties
base_model: nbeerbower/llama-3-gutenberg-8B
parameters:
  int8_mask: true
dtype: float16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "KingNish/KingNish-Llama3-8b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```