|
|
|
--- |
|
|
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct |
|
- mlabonne/ChimeraLlama-3-8B-v3 |
|
base_model: |
|
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct |
|
- mlabonne/ChimeraLlama-3-8B-v3 |
|
license: mit |
|
pipeline_tag: text-generation |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/KingNish-Llama3-8b-GGUF |
|
This is quantized version of [KingNish/KingNish-Llama3-8b](https://huggingface.co/KingNish/KingNish-Llama3-8b) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
# KingNish-Llama3-8b |
|
|
|
KingNish-Llama3-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct) |
|
* [mlabonne/ChimeraLlama-3-8B-v3](https://huggingface.co/mlabonne/ChimeraLlama-3-8B-v3) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: nbeerbower/llama-3-gutenberg-8B |
|
# No parameters necessary for base model |
|
- model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct |
|
parameters: |
|
density: 0.6 |
|
weight: 0.4 |
|
- model: mlabonne/ChimeraLlama-3-8B-v3 |
|
parameters: |
|
density: 0.65 |
|
weight: 0.3 |
|
merge_method: dare_ties |
|
base_model: nbeerbower/llama-3-gutenberg-8B |
|
parameters: |
|
int8_mask: true |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "KingNish/KingNish-Llama3-8b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
|