---
license: llama3
base_model: Magpie-Align/Llama-3-8B-OpenHermes-243K
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-8B-OpenHermes-243K
results: []
pipeline_tag: text-generation
---
# QuantFactory/Llama-3-8B-OpenHermes-243K-GGUF
This is quantized version of [Magpie-Align/Llama-3-8B-OpenHermes-243K](https://huggingface.co/Magpie-Align/Llama-3-8B-OpenHermes-243K) created using llama.cpp
# Model Description
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: mahiatlinux/OpenHermes-v1-ShareGPT
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-8B-Openhermes-243K
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-OpenHermes-243K
wandb_log_model:
hub_model_id: SynDa/Llama-3-8B-OpenHermes-243K
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
# Llama-3-8B-OpenHermes-243K
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9845
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.762 | 0.0033 | 1 | 3.9196 |
| 0.5197 | 0.3336 | 101 | 1.1073 |
| 0.4766 | 0.6672 | 202 | 1.0158 |
| 0.4366 | 1.0008 | 303 | 0.9940 |
| 0.3358 | 1.3216 | 404 | 0.9868 |
| 0.3299 | 1.6552 | 505 | 0.9845 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1