--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer datasets: - Magpie-Align/Llama-3-8B-Self-Instruct-100K model-index: - name: Llama-3-8B-Self-Instruct-100K results: [] --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Llama-3-8B-Self-Instruct-100K-GGUF This is quantized version of [Magpie-Align/Llama-3-8B-Self-Instruct-100K](https://huggingface.co/Magpie-Align/Llama-3-8B-Self-Instruct-100K) created using llama.cpp # Original Model Card [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer chat_template: llama3 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Magpie-Align/Llama-3-8B-Self-Instruct-100K type: sharegpt conversation: llama3 dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/Llama-3-8B-self-instruct-100K sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: Llama-3-8B-Self-Instruct wandb_log_model: hub_model_id: Magpie-Align/Llama-3-8B-Self-Instruct-100K gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# Llama-3-8B-Self-Instruct-100K This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the Magpie-Align/Llama-3-8B-Self-Instruct-100K dataset. It achieves the following results on the evaluation set: - Loss: 0.6245 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3442 | 0.0190 | 1 | 2.3110 | | 0.9581 | 0.2095 | 11 | 1.1476 | | 0.8258 | 0.4190 | 22 | 0.9256 | | 0.717 | 0.6286 | 33 | 0.7341 | | 0.6746 | 0.8381 | 44 | 0.6497 | | 0.5601 | 1.0333 | 55 | 0.6268 | | 0.5571 | 1.2429 | 66 | 0.6285 | | 0.538 | 1.4524 | 77 | 0.6258 | | 0.548 | 1.6619 | 88 | 0.6251 | | 0.5467 | 1.8714 | 99 | 0.6245 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1