aashish1904 commited on
Commit
d8b23ea
ยท
verified ยท
1 Parent(s): ef32030

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ language:
5
+ - en
6
+ - ko
7
+ license: cc-by-nc-4.0
8
+ tags:
9
+ - dnotitia
10
+ - nlp
11
+ - llm
12
+ - slm
13
+ - conversation
14
+ - chat
15
+ base_model:
16
+ - meta-llama/Meta-Llama-3.1-8B
17
+ library_name: transformers
18
+ pipeline_tag: text-generation
19
+
20
+ ---
21
+
22
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
23
+
24
+
25
+ # QuantFactory/Llama-DNA-1.0-8B-Instruct-GGUF
26
+ This is quantized version of [dnotitia/Llama-DNA-1.0-8B-Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) created using llama.cpp
27
+
28
+ # Original Model Card
29
+
30
+
31
+ # DNA 1.0 8B Instruct
32
+
33
+ <p align="center">
34
+ <img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
35
+ </p>
36
+
37
+ **DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.
38
+
39
+ DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.
40
+
41
+ - **Developed by:** Dnotitia Inc.
42
+ - **Supported Languages:** Korean, English
43
+ - **Vocab Size:** 128,256
44
+ - **Context Length:** 131,072 tokens (128k)
45
+ - **License:** CC BY-NC 4.0
46
+
47
+ <div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
48
+ <p><strong>NOTICE (Korean):</strong></p>
49
+ <p>๋ณธ ๋ชจ๋ธ์€ ์ƒ์—…์  ๋ชฉ์ ์œผ๋กœ ํ™œ์šฉํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒ์—…์  ์ด์šฉ์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•œ ํ˜‘์˜ ์ ˆ์ฐจ๋ฅผ ๊ฑฐ์ณ ์ƒ์—…์  ํ™œ์šฉ์„ ์Šน์ธํ•ด ๋“œ๋ฆฌ๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.</p>
50
+ <p>Try DNA-powered Mnemos Assistant! <a href="https://request-demo.dnotitia.ai/">Beta Open โ†’</a></p>
51
+ </div>
52
+
53
+ ## Training Procedure
54
+
55
+ <p align="center">
56
+ <img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
57
+ </p>
58
+
59
+ ## Evaluation
60
+
61
+ We evaluated DNA 1.0 8B Instruct against other prominent language models of similar size across various benchmarks, including Korean-specific tasks and general language understanding metrics. More details will be provided in the upcoming <u>Technical Report</u>.
62
+
63
+ | Language | Benchmark | **dnotitia/Llama-DNA-1.0-8B-Instruct** | LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | Qwen/Qwen2.5-7B-Instruct | meta-llama/Llama-3.1-8B-Instruct | mistralai/Mistral-7B-Instruct-v0.3 | NCSOFT/Llama-VARCO-8B-Instruct | upstage/SOLAR-10.7B-Instruct-v1.0 |
64
+ |----------|------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
65
+ | Korean | KMMLU | **53.26** (1st) | 45.30 | 45.28 | 42.17 | <u>45.66</u> | 41.66 | 31.45 | 38.49 | 41.50 |
66
+ | | KMMLU-hard | **29.46** (1st) | 23.17 | 20.78 | 19.25 | <u>24.78</u> | 20.49 | 17.86 | 19.83 | 20.61 |
67
+ | | KoBEST | **83.40** (1st) | 79.05 | 80.13 | <u>81.67</u> | 78.51 | 67.56 | 63.77 | 72.99 | 73.26 |
68
+ | | Belebele | **57.99** (1st) | 40.97 | 45.11 | 49.40 | <u>54.85</u> | 54.70 | 40.31 | 53.17 | 48.68 |
69
+ | | CSATQA | <u>43.32</u> (2nd) | 40.11 | 34.76 | 39.57 | **45.45** | 36.90 | 27.27 | 32.62 | 34.22 |
70
+ | English | MMLU | 66.64 (3rd) | 65.27 | 64.32 | 63.63 | **74.26** | <u>68.26</u> | 62.04 | 63.25 | 65.30 |
71
+ | | MMLU-Pro | **43.05** (1st) | 40.73 | 38.90 | 32.79 | <u>42.5</u> | 40.92 | 33.49 | 37.11 | 30.25 |
72
+ | | GSM8K | **80.52** (1st) | 65.96 | <u>80.06</u> | 56.18 | 75.74 | 75.82 | 49.66 | 64.14 | 69.22 |
73
+ - The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
74
+
75
+ **Evaluation Protocol**
76
+ For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
77
+
78
+ | | Evaluation setting | Metric | Evaluation tool |
79
+ |------------|--------------------|-------------------------------------|-----------------|
80
+ | KMMLU | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
81
+ | KMMLU Hard | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
82
+ | KoBEST | 5-shot | macro\_avg / f1 | lm-eval-harness |
83
+ | Belebele | 0-shot | acc | lm-eval-harness |
84
+ | CSATQA | 0-shot | acc\_norm | lm-eval-harness |
85
+ | MMLU | 5-shot | macro\_avg / acc | lm-eval-harness |
86
+ | MMLU Pro | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
87
+ | GSM8K | 5-shot | acc, exact\_match & strict\_extract | lm-eval-harness |
88
+
89
+ ## Quickstart
90
+
91
+ This model requires `transformers >= 4.43.0`.
92
+
93
+ ```python
94
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct')
97
+ model = AutoModelForCausalLM.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct', device_map='auto')
98
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
99
+
100
+ conversation = [
101
+ {"role": "system", "content": "You are a helpful assistant, Dnotitia DNA."},
102
+ {"role": "user", "content": "๋„ˆ์˜ ์ด๋ฆ„์€?"},
103
+ ]
104
+ inputs = tokenizer.apply_chat_template(conversation,
105
+ add_generation_prompt=True,
106
+ return_dict=True,
107
+ return_tensors="pt").to(model.device)
108
+ _ = model.generate(**inputs, streamer=streamer)
109
+ ```
110
+
111
+ ## Limitations
112
+
113
+ While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
114
+
115
+ - The model may occasionally generate biased or inappropriate content
116
+ - Responses are based on training data and may not reflect current information
117
+ - The model may sometimes produce factually incorrect or inconsistent answers
118
+ - Performance may vary depending on the complexity and domain of the task
119
+ - Generated content should be reviewed for accuracy and appropriateness
120
+
121
+ ## License
122
+
123
+ This model is released under CC BY-NC 4.0 license. For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
124
+
125
+ ## Appendix
126
+
127
+ - KMMLU scores comparison chart:
128
+ <img src="assets/comparison-chart.png" width="100%" style="margin: 40px auto;">
129
+
130
+ - DNA 1.0 8B Instruct model architecture <sup>[1]</sup>:
131
+ <img src="assets/model-architecture.png" width="500" style="margin: 40px auto;">
132
+
133
+ [1]: <https://www.linkedin.com/posts/sebastianraschka_the-llama-32-1b-and-3b-models-are-my-favorite-activity-7248317830943686656-yyYD/>
134
+
135
+ - The median percentage of modelโ€™s weight difference between before and after the merge (our SFT model + Llama 3.1 8B Instruct):
136
+ <img src="assets/ours-vs-merged.png" width="100%" style="margin: 40px auto;">
137
+
138
+ ## Citation
139
+
140
+ If you use or discuss this model in your academic research, please cite the project to help spread awareness:
141
+
142
+ ```
143
+ @article{dnotitiadna2024,
144
+ title = {Dnotitia DNA 1.0 8B Instruct},
145
+ author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
146
+ year = {2024},
147
+ url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
148
+ version = {1.0},
149
+ }
150
+ ```
151
+
152
+