File size: 2,589 Bytes
83c59ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

---

language:
- en
- zh
library_name: transformers
tags:
- Long Context
- chatglm
- llama
datasets:
- THUDM/LongWriter-6k
license: llama3.1

---

![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)

# QuantFactory/LongWriter-llama3.1-8b-GGUF
This is quantized version of [THUDM/LongWriter-llama3.1-8b](https://huggingface.co/THUDM/LongWriter-llama3.1-8b) created using llama.cpp

# Original Model Card

# LongWriter-llama3.1-8b

<p align="center">
  🤗 <a href="https://huggingface.co/datasets/THUDM/LongWriter-6k" target="_blank">[LongWriter Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongWriter" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/2408.07055" target="_blank">[LongWriter Paper]</a> 
</p>

LongWriter-llama3.1-8b is trained based on [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B), and is capable of generating 10,000+ words at once.


A simple demo for deployment of the model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-llama3.1-8b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-llama3.1-8b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
query = "Write a 10000-word China travel guide"
prompt = f"[INST]{query}[/INST]"
input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device)
context_length = input.input_ids.shape[-1]
output = model.generate(
    **input,
    max_new_tokens=32768,
    num_beams=1,
    do_sample=True,
    temperature=0.5,
)[0]
response = tokenizer.decode(output[context_length:], skip_special_tokens=True)
print(response)
```
Please ahere to the prompt template (system prompt is optional): `<<SYS>>\n{system prompt}\n<</SYS>>\n\n[INST]{query1}[/INST]{response1}[INST]{query2}[/INST]{response2}...`

License: [Llama-3.1 License](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)

## Citation

If you find our work useful, please consider citing LongWriter:

```
@article{bai2024longwriter,
  title={LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs}, 
  author={Yushi Bai and Jiajie Zhang and Xin Lv and Linzhi Zheng and Siqi Zhu and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li},
  journal={arXiv preprint arXiv:2408.07055},
  year={2024}
}
```