File size: 2,341 Bytes
9a658e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
datasets:
- MathGenie/MathCode-Pile
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Meta-Llama-3-8B
pipeline_tag: text-generation
tags:
- math
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/MathCoder2-Llama-3-8B-GGUF
This is quantized version of [MathGenie/MathCoder2-Llama-3-8B](https://huggingface.co/MathGenie/MathCoder2-Llama-3-8B) created using llama.cpp
# Original Model Card
# MathCoder2
### Introduction
The MathCoder2 models are created by conducting continued pretraining on [MathCode-Pile](https://huggingface.co/datasets/MathGenie/MathCode-Pile). They are introduced in the paper [MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code](https://arxiv.org/abs/2410.08196).
The mathematical pretraining dataset includes mathematical code accompanied with natural language reasoning steps, making it a superior resource for models aimed at performing advanced mathematical reasoning tasks.
### Evaluation
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65dd9e7b4a4fce1ec96dc6b7/BEZoDZLjp-fPFlt7oFXBa.png)
### Citation
If you find this repository helpful, please consider citing our papers:
```
@misc{lu2024mathcoder2bettermathreasoning,
title={MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code},
author={Zimu Lu and Aojun Zhou and Ke Wang and Houxing Ren and Weikang Shi and Junting Pan and Mingjie Zhan and Hongsheng Li},
year={2024},
eprint={2410.08196},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.08196},
}
```
```
@inproceedings{
wang2024mathcoder,
title={MathCoder: Seamless Code Integration in {LLM}s for Enhanced Mathematical Reasoning},
author={Zimu Lu and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z8TW0ttBPp}
}
```
|