aashish1904's picture
Upload README.md with huggingface_hub
b89a069 verified
|
raw
history blame
2.5 kB
---
license: apache-2.0
tags:
- Safetensors
- mistral
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.1
- athirdpath/NSFW_DPO_Noromaid-7b
- transformers
- safetensors
- mistral
- text-generation
- en
- dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v2
- dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW
- license:cc-by-nc-4.0
- autotrain_compatible
- endpoints_compatible
- has_space
- text-generation-inference
- region:us
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF
This is quantized version of [MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1](https://huggingface.co/MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1) created using llama.cpp
# Original Model Card
# NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1 is a merge of the following models:
* [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
* [athirdpath/NSFW_DPO_Noromaid-7b](https://huggingface.co/athirdpath/NSFW_DPO_Noromaid-7b)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.1
layer_range: [0, 32]
- model: athirdpath/NSFW_DPO_Noromaid-7b
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```