munish0838 commited on
Commit
8ed91c1
1 Parent(s): 0bd8e69

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: mit
5
+ language:
6
+ - multilingual
7
+ tags:
8
+ - nlp
9
+ base_model: HuggingFaceTB/SmolLM2-1.7B
10
+ pipeline_tag: text-generation
11
+ inference: true
12
+
13
+ ---
14
+
15
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
16
+
17
+
18
+ # QuantFactory/NuExtract-1.5-smol-GGUF
19
+ This is quantized version of [numind/NuExtract-1.5-smol](https://huggingface.co/numind/NuExtract-1.5-smol) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+
24
+ # NuExtract-1.5-smol by NuMind 🔥
25
+
26
+ NuExtract-1.5-smol is a fine-tuning of Hugging Face's [SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B), intended for structured information extraction. It uses the same training data as [NuExtract-1.5](https://huggingface.co/numind/NuExtract-1.5) and supports multiple languages, while being less than half the size (1.7B vs 3.8B).
27
+
28
+ To use the model, provide an input text and a JSON template describing the information you need to extract.
29
+
30
+ Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.
31
+
32
+ Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o).
33
+
34
+ Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5)
35
+
36
+ We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5)
37
+
38
+ ## Benchmark
39
+
40
+ Zero-shot performance (English):
41
+
42
+ <p align="left">
43
+ <img src="english_bench.png" style="height: auto;">
44
+ </p>
45
+
46
+ Zero-shot performance (Multilingual):
47
+
48
+ <p align="left">
49
+ <img src="multilingual_bench.png" style="height: auto;">
50
+ </p>
51
+
52
+ ## Usage
53
+
54
+ To use the model:
55
+
56
+ ```python
57
+ import json
58
+ import torch
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
60
+
61
+ def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
62
+ template = json.dumps(json.loads(template), indent=4)
63
+ prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
64
+
65
+ outputs = []
66
+ with torch.no_grad():
67
+ for i in range(0, len(prompts), batch_size):
68
+ batch_prompts = prompts[i:i+batch_size]
69
+ batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
70
+
71
+ pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
72
+ outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
73
+
74
+ return [output.split("<|output|>")[1] for output in outputs]
75
+
76
+ model_name = "numind/NuExtract-1.5-smol"
77
+ device = "cuda"
78
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
80
+
81
+ text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
82
+ superior performance and efficiency. Mistral 7B outperforms the best open 13B
83
+ model (Llama 2) across all evaluated benchmarks, and the best released 34B
84
+ model (Llama 1) in reasoning, mathematics, and code generation. Our model
85
+ leverages grouped-query attention (GQA) for faster inference, coupled with sliding
86
+ window attention (SWA) to effectively handle sequences of arbitrary length with a
87
+ reduced inference cost. We also provide a model fine-tuned to follow instructions,
88
+ Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
89
+ automated benchmarks. Our models are released under the Apache 2.0 license.
90
+ Code: <https://github.com/mistralai/mistral-src>
91
+ Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""
92
+
93
+ template = """{
94
+ "Model": {
95
+ "Name": "",
96
+ "Number of parameters": "",
97
+ "Number of max token": "",
98
+ "Architecture": []
99
+ },
100
+ "Usage": {
101
+ "Use case": [],
102
+ "Licence": ""
103
+ }
104
+ }"""
105
+
106
+ prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
107
+ print(prediction)
108
+
109
+ ```
110
+
111
+ Sliding window prompting:
112
+
113
+ ```python
114
+ import json
115
+
116
+ MAX_INPUT_SIZE = 20_000
117
+ MAX_NEW_TOKENS = 6000
118
+
119
+ def clean_json_text(text):
120
+ text = text.strip()
121
+ text = text.replace("\#", "#").replace("\&", "&")
122
+ return text
123
+
124
+ def predict_chunk(text, template, current, model, tokenizer):
125
+ current = clean_json_text(current)
126
+
127
+ input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
128
+ input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
129
+ output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)
130
+
131
+ return clean_json_text(output.split("<|output|>")[1])
132
+
133
+ def split_document(document, window_size, overlap):
134
+ tokens = tokenizer.tokenize(document)
135
+ print(f"\tLength of document: {len(tokens)} tokens")
136
+
137
+ chunks = []
138
+ if len(tokens) > window_size:
139
+ for i in range(0, len(tokens), window_size-overlap):
140
+ print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
141
+ chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
142
+ chunks.append(chunk)
143
+
144
+ if i + len(tokens[i:i + window_size]) >= len(tokens):
145
+ break
146
+ else:
147
+ chunks.append(document)
148
+ print(f"\tSplit into {len(chunks)} chunks")
149
+
150
+ return chunks
151
+
152
+ def handle_broken_output(pred, prev):
153
+ try:
154
+ if all([(v in ["", []]) for v in json.loads(pred).values()]):
155
+ # if empty json, return previous
156
+ pred = prev
157
+ except:
158
+ # if broken json, return previous
159
+ pred = prev
160
+
161
+ return pred
162
+
163
+ def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
164
+ # split text into chunks of n tokens
165
+ tokens = tokenizer.tokenize(text)
166
+ chunks = split_document(text, window_size, overlap)
167
+
168
+ # iterate over text chunks
169
+ prev = template
170
+ for i, chunk in enumerate(chunks):
171
+ print(f"Processing chunk {i}...")
172
+ pred = predict_chunk(chunk, template, prev, model, tokenizer)
173
+
174
+ # handle broken output
175
+ pred = handle_broken_output(pred, prev)
176
+
177
+ # iterate
178
+ prev = pred
179
+
180
+ return pred
181
+ ```