GGUF
conversational
aashish1904 commited on
Commit
42d243d
1 Parent(s): 80dc468

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +233 -0
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ datasets:
5
+ - tiiuae/falcon-refinedweb
6
+ language:
7
+ - en
8
+ - de
9
+ - es
10
+ - fr
11
+ - it
12
+ - nl
13
+ - pl
14
+ - pt
15
+ - ro
16
+ - cs
17
+ inference: false
18
+ license: unknown
19
+
20
+ ---
21
+
22
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
23
+
24
+ # QuantFactory/falcon-11B-GGUF
25
+ This is quantized version of [tiiuae/falcon-11B](https://huggingface.co/tiiuae/falcon-11B) created using llama.cpp
26
+
27
+ # Original Model Card
28
+
29
+
30
+ # 🚀 Falcon2-11B
31
+
32
+ **Falcon2-11B is an 11B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. The model is made available under the [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.**
33
+
34
+ *[arXiv technical report](https://arxiv.org/abs/2407.14885)*
35
+
36
+
37
+ 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost from HF](https://huggingface.co/blog/falcon)!
38
+
39
+ ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
+ import transformers
44
+ import torch
45
+
46
+ model = "tiiuae/falcon-11B"
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained(model)
49
+ pipeline = transformers.pipeline(
50
+ "text-generation",
51
+ model=model,
52
+ tokenizer=tokenizer,
53
+ torch_dtype=torch.bfloat16,
54
+ )
55
+ sequences = pipeline(
56
+ "Can you explain the concepts of Quantum Computing?",
57
+ max_length=200,
58
+ do_sample=True,
59
+ top_k=10,
60
+ num_return_sequences=1,
61
+ eos_token_id=tokenizer.eos_token_id,
62
+ )
63
+ for seq in sequences:
64
+ print(f"Result: {seq['generated_text']}")
65
+
66
+ ```
67
+
68
+ 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
69
+
70
+ For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
71
+
72
+ # Model Card for Falcon2-11B
73
+
74
+ ## Model Details
75
+
76
+ ### Model Description
77
+
78
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae)
79
+ - **Model type:** Causal decoder-only
80
+ - **Language(s) (NLP):** English, German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish
81
+ - **License:** [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html)
82
+
83
+ ### Model Source
84
+
85
+ - **Paper:** *coming soon*.
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use
90
+
91
+ Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
92
+
93
+ ### Out-of-Scope Use
94
+
95
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
96
+
97
+ ## Bias, Risks, and Limitations
98
+
99
+ Falcon2-11B is trained mostly on English, but also German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
100
+
101
+ ### Recommendations
102
+
103
+ We recommend users of Falcon2-11B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
104
+
105
+ ## How to Get Started with the Model
106
+
107
+
108
+ ```python
109
+ from transformers import AutoTokenizer, AutoModelForCausalLM
110
+ import transformers
111
+ import torch
112
+
113
+ model = "tiiuae/falcon-11B"
114
+
115
+ tokenizer = AutoTokenizer.from_pretrained(model)
116
+ pipeline = transformers.pipeline(
117
+ "text-generation",
118
+ model=model,
119
+ tokenizer=tokenizer,
120
+ torch_dtype=torch.bfloat16,
121
+ device_map="auto",
122
+ )
123
+ sequences = pipeline(
124
+ "Can you explain the concepts of Quantum Computing?",
125
+ max_length=200,
126
+ do_sample=True,
127
+ top_k=10,
128
+ num_return_sequences=1,
129
+ eos_token_id=tokenizer.eos_token_id,
130
+ )
131
+ for seq in sequences:
132
+ print(f"Result: {seq['generated_text']}")
133
+
134
+ ```
135
+
136
+ ## Training Details
137
+
138
+ ### Training Data
139
+
140
+ Falcon2-11B was trained over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. It followed a four stage training strategy. The first three stages were focused on increasing the context length, from to 2048 to 4096 and finally to 8192 tokens. The last stage aimed to further enhance performance using only high quality data.
141
+
142
+ Overall, the data sources included RefinedWeb-English, Refined Web-Europe (cs, de, es, fr, it, nl, pl, pt, ro, sv), high quality technical data, code data, and conversational data extracted from public sources.
143
+
144
+
145
+ The training stages were as follows:
146
+
147
+ | **Stage** | **Context length** | **Tokens** |
148
+ |--------------|-----------------|-------------|
149
+ | Stage 1 | 2048 | 4500 B |
150
+ | Stage 2 | 4096 | 250 B |
151
+ | Stage 3 | 8192 | 250 B |
152
+ | Stage 4 | 8192 | 500 B |
153
+
154
+
155
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.
156
+
157
+ ### Training Procedure
158
+
159
+ Falcon2-11B was trained on 1024 A100 40GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=8, PP=1, DP=128) combined with ZeRO and Flash-Attention 2.
160
+
161
+ #### Training Hyperparameters
162
+
163
+ | **Hyperparameter** | **Value** | **Comment** |
164
+ |--------------------|------------|-------------------------------------------|
165
+ | Precision | `bfloat16` | |
166
+ | Optimizer | AdamW | |
167
+ | Max learning rate | 3.7e-4 | Following a linear warm-up, then cosine decay to 1.89e-5 across 4500 B tokens. |
168
+ | Weight decay | 1e-1 | |
169
+ | Z-loss | 1e-4 | |
170
+ | Batch size | Variable | Batch size was gradually increased during the training |
171
+
172
+
173
+ #### Speeds, Sizes, Times
174
+
175
+ The model training took roughly two months.
176
+
177
+
178
+ ## Evaluation
179
+
180
+ |English Benchmark | **Value** |
181
+ |--------------------|------------|
182
+ | ARC-Challenge-25shots | 59.73 |
183
+ | HellaSwag-10shots | 82.91 |
184
+ | MMLU-5shots | 58.37 |
185
+ | Winogrande-5shots | 78.30 |
186
+ | TruthfulQA-0shot | 52.56 |
187
+ | GSM8k-5shots | 53.83 |
188
+ | ARC-Challenge-0shot | 50.17 |
189
+ | ARC-Easy-0shot | 77.78 |
190
+ | Hellaswag-0shot | 82.07 |
191
+
192
+ We thank the leaderboard team from HuggingFace for providing an official evaluation of our model on the leaderboard tasks.
193
+
194
+ ## Technical Specifications
195
+
196
+ ### Model Architecture and Objective
197
+
198
+ Falcon2-11B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
199
+
200
+ The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
201
+
202
+ * **Positional embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
203
+ * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention-2 ([Dao, 2023](https://arxiv.org/abs/2307.08691));
204
+ * **Decoder-block:** parallel attention/MLP.
205
+
206
+ | **Hyperparameter** | **Value** | **Comment** |
207
+ |--------------------|-----------|----------------------------------------|
208
+ | Layers | 60 | |
209
+ | `d_model` | 4096 | |
210
+ | `head_dim` | 128 | |
211
+ | Vocabulary | 65024 | |
212
+ | Sequence length | 8192 | During stages 3 and 4 |
213
+
214
+ ### Compute Infrastructure
215
+
216
+ #### Hardware
217
+
218
+ Falcon2-11B was trained on AWS SageMaker, using on average 1024 A100 40GB GPUs in 128 p4d instances.
219
+
220
+ #### Software
221
+
222
+ Falcon2-11B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels and FlashAttention-2. More details about the distributed training strategy can be found in [Almazrouei et.al](https://arxiv.org/abs/2311.16867).
223
+
224
+ ## Citation
225
+
226
+ [Falcon2-11B Technical Report, Malartic et al. 2024](https://www.arxiv.org/abs/2407.14885)
227
+
228
+ ## License
229
+
230
+ Falcon2-11B is licenced under [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.
231
+
232
+ ## Contact
233
+ falconllm@tii.ae