Text Generation
GGUF
English
finance
Inference Endpoints
munish0838 commited on
Commit
21118cb
1 Parent(s): 79cd2a6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ tags:
6
+ - finance
7
+ datasets:
8
+ - Open-Orca/OpenOrca
9
+ - GAIR/lima
10
+ - WizardLM/WizardLM_evol_instruct_V2_196k
11
+ base_model: instruction-pretrain/finance-Llama3-8B
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # QuantFactory/finance-Llama3-8B-GGUF
16
+ This is quantized version of [instruction-pretrain/finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B) created using llama.cpp
17
+
18
+ # Model Description
19
+
20
+ ## Instruction Pre-Training: Language Models are Supervised Multitask Learners
21
+ This repo contains the **finance model developed from Llama3-8B** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).
22
+
23
+ We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. **In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.**
24
+
25
+ <p align='center'>
26
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
27
+ </p>
28
+
29
+ ## Resources
30
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
31
+
32
+ - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
33
+ - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
34
+ - General Models Pre-Trained from Scratch:
35
+ - [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
36
+ - [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
37
+ - Domain-Specific Models Pre-Trained from Llama3-8B:
38
+ - [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
39
+ - [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
40
+
41
+
42
+ ## Domain-Adaptive Continued Pre-Training
43
+ Following [AdaptLLM](https://huggingface.co/AdaptLLM/finance-chat), we augment the domain-specific raw corpora with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer).
44
+
45
+ For example, to chat with the finance-Llama3-8B model:
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+
49
+ model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/finance-Llama3-8B")
50
+ tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/finance-Llama3-8B")
51
+
52
+ # Put your input here, NO prompt template is required
53
+ user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
54
+ Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
55
+ MMM Chicago Stock Exchange, Inc.
56
+ 1.500% Notes due 2026 MMM26 New York Stock Exchange
57
+ 1.750% Notes due 2030 MMM30 New York Stock Exchange
58
+ 1.500% Notes due 2031 MMM31 New York Stock Exchange
59
+
60
+ Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
61
+
62
+ inputs = tokenizer(user_input, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device)
63
+ outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0]
64
+
65
+ answer_start = int(inputs.shape[-1])
66
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
67
+
68
+ print(pred)
69
+ ```
70
+
71
+ ## Model Citation
72
+ If you find our work helpful, please cite us:
73
+
74
+ [AdaptLLM](https://huggingface.co/papers/2309.09530)
75
+ ```bibtex
76
+ @inproceedings{
77
+ cheng2024adapting,
78
+ title={Adapting Large Language Models via Reading Comprehension},
79
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
80
+ booktitle={The Twelfth International Conference on Learning Representations},
81
+ year={2024},
82
+ url={https://openreview.net/forum?id=y886UXPEZ0}
83
+ }
84
+ ```