--- tags: - code - starcoder2 library_name: transformers pipeline_tag: text-generation license: bigcode-openrail-m --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/starcoder2-7b-instruct-GGUF This is quantized version of [TechxGenus/starcoder2-7b-instruct](https://huggingface.co/TechxGenus/starcoder2-7b-instruct) created using llama.cpp # Original Model Card
### starcoder2-instruct We've fine-tuned starcoder2-7b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **73.2 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt). ### Usage Here give some examples of how to use our model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch PROMPT = """### Instruction {instruction} ### Response """ instruction =