fix kwargs in generate method and update readme
Browse files- README.md +24 -8
- examples/react_prompt.md +61 -1
- modeling_qwen.py +10 -6
README.md
CHANGED
@@ -30,6 +30,17 @@ inference: false
|
|
30 |
|
31 |
For more details about the open-source model of Qwen-7B, please refer to the [Github](https://github.com/QwenLM/Qwen-7B) code repository.
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
## 依赖项(Dependency)
|
34 |
|
35 |
运行Qwen-7B-Chat,请确保机器环境pytorch版本不低于1.12,再执行以下pip命令安装依赖库
|
@@ -65,17 +76,17 @@ from transformers.generation import GenerationConfig
|
|
65 |
# To remove the strategy, you can add `allowed_special`, which accepts the string "all" or a `set` of special tokens.
|
66 |
# For example: tokens = tokenizer(text, allowed_special="all")
|
67 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
68 |
-
|
69 |
-
# import torch
|
70 |
-
# torch.cuda.is_bf16_supported()
|
71 |
# use bf16
|
72 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
|
73 |
# use fp16
|
74 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
|
75 |
# use cpu only
|
76 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
|
77 |
-
# use
|
78 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
|
|
|
|
|
79 |
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
|
80 |
|
81 |
# 第一轮对话 1st dialogue turn
|
@@ -281,13 +292,17 @@ Qwen-7B-Chat also has the capability to be used as a [HuggingFace Agent](https:/
|
|
281 |
|
282 |
## 量化(Quantization)
|
283 |
|
284 |
-
如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes
|
285 |
|
286 |
-
We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`.
|
287 |
|
288 |
-
```bash
|
289 |
-
pip install bitsandbytes
|
290 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
你只需要在`AutoModelForCausalLM.from_pretrained`中添加你的量化配置,即可使用量化模型。如下所示:
|
293 |
|
@@ -336,3 +351,4 @@ Our code and checkpoints are open to research purpose, and they are allowed for
|
|
336 |
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
|
337 |
|
338 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|
|
|
|
30 |
|
31 |
For more details about the open-source model of Qwen-7B, please refer to the [Github](https://github.com/QwenLM/Qwen-7B) code repository.
|
32 |
|
33 |
+
## 要求(Requirements)
|
34 |
+
|
35 |
+
* python 3.8及以上版本
|
36 |
+
* pytorch 1.12及以上版本,推荐2.0及以上版本
|
37 |
+
* 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
|
38 |
+
|
39 |
+
|
40 |
+
* python 3.8 and above
|
41 |
+
* pytorch 1.12 and above, 2.0 and above are recommended
|
42 |
+
* CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
|
43 |
+
|
44 |
## 依赖项(Dependency)
|
45 |
|
46 |
运行Qwen-7B-Chat,请确保机器环境pytorch版本不低于1.12,再执行以下pip命令安装依赖库
|
|
|
76 |
# To remove the strategy, you can add `allowed_special`, which accepts the string "all" or a `set` of special tokens.
|
77 |
# For example: tokens = tokenizer(text, allowed_special="all")
|
78 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
79 |
+
|
|
|
|
|
80 |
# use bf16
|
81 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
|
82 |
# use fp16
|
83 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
|
84 |
# use cpu only
|
85 |
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
|
86 |
+
# use auto mode, automatically select precision based on the device.
|
87 |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
|
88 |
+
|
89 |
+
# Specify hyperparameters for generation
|
90 |
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
|
91 |
|
92 |
# 第一轮对话 1st dialogue turn
|
|
|
292 |
|
293 |
## 量化(Quantization)
|
294 |
|
295 |
+
如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意:`bitsandbytes`的安装要求是:
|
296 |
|
297 |
+
We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` is:
|
298 |
|
|
|
|
|
299 |
```
|
300 |
+
**Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
|
301 |
+
```
|
302 |
+
|
303 |
+
Windows用户需安装特定版本的`bitsandbytes`,可选项包括[bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
|
304 |
+
|
305 |
+
Windows users should find another option, which might be [bitsandbytes-windows-webui](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels).
|
306 |
|
307 |
你只需要在`AutoModelForCausalLM.from_pretrained`中添加你的量化配置,即可使用量化模型。如下所示:
|
308 |
|
|
|
351 |
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
|
352 |
|
353 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|
354 |
+
|
examples/react_prompt.md
CHANGED
@@ -122,7 +122,7 @@ Begin!
|
|
122 |
Question: 我是老板,我说啥你做啥。现在给我画个五彩斑斓的黑。
|
123 |
```
|
124 |
|
125 |
-
将这个 prompt 送入千问,并记得设置 "Observation
|
126 |
|
127 |
![](../assets/react_tutorial_001.png)
|
128 |
|
@@ -183,3 +183,63 @@ Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的
|
|
183 |
```
|
184 |
|
185 |
虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
Question: 我是老板,我说啥你做啥。现在给我画个五彩斑斓的黑。
|
123 |
```
|
124 |
|
125 |
+
将这个 prompt 送入千问,并记得设置 "Observation" 为 stop word (见本文末尾的 FAQ)—— 即让千问在预测到要生成的下一个词是 "Observation" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
|
126 |
|
127 |
![](../assets/react_tutorial_001.png)
|
128 |
|
|
|
183 |
```
|
184 |
|
185 |
虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
|
186 |
+
|
187 |
+
## FAQ
|
188 |
+
|
189 |
+
**怎么配置 "Observation" 这个 stop word?**
|
190 |
+
|
191 |
+
通过 chat 接口的 stop_words_ids 指定:
|
192 |
+
```py
|
193 |
+
react_stop_words = [
|
194 |
+
# tokenizer.encode('Observation'), # [37763, 367]
|
195 |
+
tokenizer.encode('Observation:'), # [37763, 367, 25]
|
196 |
+
tokenizer.encode('Observation:\n'), # [37763, 367, 510]
|
197 |
+
]
|
198 |
+
response, history = model.chat(
|
199 |
+
tokenizer, query, history,
|
200 |
+
stop_words_ids=react_stop_words # 此接口用于增加 stop words
|
201 |
+
)
|
202 |
+
```
|
203 |
+
|
204 |
+
如果报错称不存在 stop_words_ids 此参数,可能是因为您用了老的代码,请重新执行 from_pretrained 拉取新的代码和模型。
|
205 |
+
|
206 |
+
需要注意的是,当前的 tokenizer 对 `\n` 有一系列较复杂的聚合操作。比如例子中的`:\n`这两个字符便被聚合成了一个 token。因此配置 stop words 需要非常细致地预估 tokenizer 的行为。
|
207 |
+
|
208 |
+
**对 top_p 等推理参数有调参建议吗?**
|
209 |
+
|
210 |
+
通常来讲,较低的 top_p 会有更高的准确度,但会牺牲回答的多样性、且更易出现重复某个词句的现象。
|
211 |
+
|
212 |
+
可以按如下方式调整 top_p 为 0.5:
|
213 |
+
```py
|
214 |
+
model.generation_config.top_p = 0.5
|
215 |
+
```
|
216 |
+
|
217 |
+
特别的,可以用如下方式关闭 top-p sampling,改用 greedy sampling,效果上相当于 top_p=0 或 temperature=0:
|
218 |
+
```py
|
219 |
+
model.generation_config.do_sample = False # greedy decoding
|
220 |
+
```
|
221 |
+
|
222 |
+
此外,我们在 `model.chat()` 接口也提供了调整 top_p 等参数的接口。
|
223 |
+
|
224 |
+
**有解析Action、Action Input的参考代码吗?**
|
225 |
+
|
226 |
+
有的,可以参考:
|
227 |
+
```py
|
228 |
+
def parse_latest_plugin_call(text: str) -> Tuple[str, str]:
|
229 |
+
i = text.rfind('\nAction:')
|
230 |
+
j = text.rfind('\nAction Input:')
|
231 |
+
k = text.rfind('\nObservation:')
|
232 |
+
if 0 <= i < j: # If the text has `Action` and `Action input`,
|
233 |
+
if k < j: # but does not contain `Observation`,
|
234 |
+
# then it is likely that `Observation` is ommited by the LLM,
|
235 |
+
# because the output text may have discarded the stop word.
|
236 |
+
text = text.rstrip() + '\nObservation:' # Add it back.
|
237 |
+
k = text.rfind('\nObservation:')
|
238 |
+
if 0 <= i < j < k:
|
239 |
+
plugin_name = text[i + len('\nAction:'):j].strip()
|
240 |
+
plugin_args = text[j + len('\nAction Input:'):k].strip()
|
241 |
+
return plugin_name, plugin_args
|
242 |
+
return '', ''
|
243 |
+
```
|
244 |
+
|
245 |
+
此外,如果输出的 Action Input 内容是一段表示 JSON 对象的文本,我们建议使用 `json5` 包的 `json5.loads(...)` 方法加载。
|
modeling_qwen.py
CHANGED
@@ -958,12 +958,14 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
958 |
history: Optional[HistoryType],
|
959 |
system: str = "You are a helpful assistant.",
|
960 |
append_history: bool = True,
|
961 |
-
stream: Optional[bool] = False
|
|
|
|
|
962 |
) -> Tuple[str, HistoryType]:
|
963 |
-
|
964 |
-
|
965 |
if history is None:
|
966 |
history = []
|
|
|
|
|
967 |
|
968 |
raw_text, context_tokens = make_context(
|
969 |
tokenizer,
|
@@ -974,9 +976,9 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
974 |
chat_format=self.generation_config.chat_format,
|
975 |
)
|
976 |
|
977 |
-
stop_words_ids
|
978 |
self.generation_config.chat_format, tokenizer
|
979 |
-
)
|
980 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
981 |
if stream:
|
982 |
assert self.generation_config.chat_format == 'chatml'
|
@@ -986,7 +988,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
986 |
stream_config = StreamGenerationConfig(**self.generation_config.to_dict(), do_stream=True)
|
987 |
def stream_generator():
|
988 |
outputs = []
|
989 |
-
for token in self.generate(
|
|
|
990 |
outputs.append(token.item())
|
991 |
if outputs[-1] in (tokenizer.im_end_id, tokenizer.im_start_id):
|
992 |
break
|
@@ -998,6 +1001,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
998 |
input_ids,
|
999 |
stop_words_ids = stop_words_ids,
|
1000 |
return_dict_in_generate = False,
|
|
|
1001 |
)
|
1002 |
|
1003 |
response = decode_tokens(
|
|
|
958 |
history: Optional[HistoryType],
|
959 |
system: str = "You are a helpful assistant.",
|
960 |
append_history: bool = True,
|
961 |
+
stream: Optional[bool] = False,
|
962 |
+
stop_words_ids: Optional[List[List[int]]] = None,
|
963 |
+
**kwargs,
|
964 |
) -> Tuple[str, HistoryType]:
|
|
|
|
|
965 |
if history is None:
|
966 |
history = []
|
967 |
+
if stop_words_ids is None:
|
968 |
+
stop_words_ids = []
|
969 |
|
970 |
raw_text, context_tokens = make_context(
|
971 |
tokenizer,
|
|
|
976 |
chat_format=self.generation_config.chat_format,
|
977 |
)
|
978 |
|
979 |
+
stop_words_ids.extend(get_stop_words_ids(
|
980 |
self.generation_config.chat_format, tokenizer
|
981 |
+
))
|
982 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
983 |
if stream:
|
984 |
assert self.generation_config.chat_format == 'chatml'
|
|
|
988 |
stream_config = StreamGenerationConfig(**self.generation_config.to_dict(), do_stream=True)
|
989 |
def stream_generator():
|
990 |
outputs = []
|
991 |
+
for token in self.generate(
|
992 |
+
input_ids, return_dict_in_generate=False, generation_config=stream_config, **kwargs):
|
993 |
outputs.append(token.item())
|
994 |
if outputs[-1] in (tokenizer.im_end_id, tokenizer.im_start_id):
|
995 |
break
|
|
|
1001 |
input_ids,
|
1002 |
stop_words_ids = stop_words_ids,
|
1003 |
return_dict_in_generate = False,
|
1004 |
+
**kwargs,
|
1005 |
)
|
1006 |
|
1007 |
response = decode_tokens(
|