update
Browse files- NOTICE +229 -1
- README.md +5 -5
- assets/logo.jpg +0 -0
- config.json +1 -1
- modeling_qwen.py +62 -69
- tokenizer_config.json +1 -1
NOTICE
CHANGED
@@ -49,4 +49,232 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
49 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
50 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
51 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
52 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
50 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
51 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
52 |
+
SOFTWARE.
|
53 |
+
|
54 |
+
------------- LICENSE FOR stanford_alpaca code --------------
|
55 |
+
|
56 |
+
Apache License
|
57 |
+
Version 2.0, January 2004
|
58 |
+
http://www.apache.org/licenses/
|
59 |
+
|
60 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
61 |
+
|
62 |
+
1. Definitions.
|
63 |
+
|
64 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
65 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
66 |
+
|
67 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
68 |
+
the copyright owner that is granting the License.
|
69 |
+
|
70 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
71 |
+
other entities that control, are controlled by, or are under common
|
72 |
+
control with that entity. For the purposes of this definition,
|
73 |
+
"control" means (i) the power, direct or indirect, to cause the
|
74 |
+
direction or management of such entity, whether by contract or
|
75 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
76 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
77 |
+
|
78 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
79 |
+
exercising permissions granted by this License.
|
80 |
+
|
81 |
+
"Source" form shall mean the preferred form for making modifications,
|
82 |
+
including but not limited to software source code, documentation
|
83 |
+
source, and configuration files.
|
84 |
+
|
85 |
+
"Object" form shall mean any form resulting from mechanical
|
86 |
+
transformation or translation of a Source form, including but
|
87 |
+
not limited to compiled object code, generated documentation,
|
88 |
+
and conversions to other media types.
|
89 |
+
|
90 |
+
"Work" shall mean the work of authorship, whether in Source or
|
91 |
+
Object form, made available under the License, as indicated by a
|
92 |
+
copyright notice that is included in or attached to the work
|
93 |
+
(an example is provided in the Appendix below).
|
94 |
+
|
95 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
96 |
+
form, that is based on (or derived from) the Work and for which the
|
97 |
+
editorial revisions, annotations, elaborations, or other modifications
|
98 |
+
represent, as a whole, an original work of authorship. For the purposes
|
99 |
+
of this License, Derivative Works shall not include works that remain
|
100 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
101 |
+
the Work and Derivative Works thereof.
|
102 |
+
|
103 |
+
"Contribution" shall mean any work of authorship, including
|
104 |
+
the original version of the Work and any modifications or additions
|
105 |
+
to that Work or Derivative Works thereof, that is intentionally
|
106 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
107 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
108 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
109 |
+
means any form of electronic, verbal, or written communication sent
|
110 |
+
to the Licensor or its representatives, including but not limited to
|
111 |
+
communication on electronic mailing lists, source code control systems,
|
112 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
113 |
+
Licensor for the purpose of discussing and improving the Work, but
|
114 |
+
excluding communication that is conspicuously marked or otherwise
|
115 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
116 |
+
|
117 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
118 |
+
on behalf of whom a Contribution has been received by Licensor and
|
119 |
+
subsequently incorporated within the Work.
|
120 |
+
|
121 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
122 |
+
this License, each Contributor hereby grants to You a perpetual,
|
123 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
124 |
+
copyright license to reproduce, prepare Derivative Works of,
|
125 |
+
publicly display, publicly perform, sublicense, and distribute the
|
126 |
+
Work and such Derivative Works in Source or Object form.
|
127 |
+
|
128 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
129 |
+
this License, each Contributor hereby grants to You a perpetual,
|
130 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
131 |
+
(except as stated in this section) patent license to make, have made,
|
132 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
133 |
+
where such license applies only to those patent claims licensable
|
134 |
+
by such Contributor that are necessarily infringed by their
|
135 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
136 |
+
with the Work to which such Contribution(s) was submitted. If You
|
137 |
+
institute patent litigation against any entity (including a
|
138 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
139 |
+
or a Contribution incorporated within the Work constitutes direct
|
140 |
+
or contributory patent infringement, then any patent licenses
|
141 |
+
granted to You under this License for that Work shall terminate
|
142 |
+
as of the date such litigation is filed.
|
143 |
+
|
144 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
145 |
+
Work or Derivative Works thereof in any medium, with or without
|
146 |
+
modifications, and in Source or Object form, provided that You
|
147 |
+
meet the following conditions:
|
148 |
+
|
149 |
+
(a) You must give any other recipients of the Work or
|
150 |
+
Derivative Works a copy of this License; and
|
151 |
+
|
152 |
+
(b) You must cause any modified files to carry prominent notices
|
153 |
+
stating that You changed the files; and
|
154 |
+
|
155 |
+
(c) You must retain, in the Source form of any Derivative Works
|
156 |
+
that You distribute, all copyright, patent, trademark, and
|
157 |
+
attribution notices from the Source form of the Work,
|
158 |
+
excluding those notices that do not pertain to any part of
|
159 |
+
the Derivative Works; and
|
160 |
+
|
161 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
162 |
+
distribution, then any Derivative Works that You distribute must
|
163 |
+
include a readable copy of the attribution notices contained
|
164 |
+
within such NOTICE file, excluding those notices that do not
|
165 |
+
pertain to any part of the Derivative Works, in at least one
|
166 |
+
of the following places: within a NOTICE text file distributed
|
167 |
+
as part of the Derivative Works; within the Source form or
|
168 |
+
documentation, if provided along with the Derivative Works; or,
|
169 |
+
within a display generated by the Derivative Works, if and
|
170 |
+
wherever such third-party notices normally appear. The contents
|
171 |
+
of the NOTICE file are for informational purposes only and
|
172 |
+
do not modify the License. You may add Your own attribution
|
173 |
+
notices within Derivative Works that You distribute, alongside
|
174 |
+
or as an addendum to the NOTICE text from the Work, provided
|
175 |
+
that such additional attribution notices cannot be construed
|
176 |
+
as modifying the License.
|
177 |
+
|
178 |
+
You may add Your own copyright statement to Your modifications and
|
179 |
+
may provide additional or different license terms and conditions
|
180 |
+
for use, reproduction, or distribution of Your modifications, or
|
181 |
+
for any such Derivative Works as a whole, provided Your use,
|
182 |
+
reproduction, and distribution of the Work otherwise complies with
|
183 |
+
the conditions stated in this License.
|
184 |
+
|
185 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
186 |
+
any Contribution intentionally submitted for inclusion in the Work
|
187 |
+
by You to the Licensor shall be under the terms and conditions of
|
188 |
+
this License, without any additional terms or conditions.
|
189 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
190 |
+
the terms of any separate license agreement you may have executed
|
191 |
+
with Licensor regarding such Contributions.
|
192 |
+
|
193 |
+
6. Trademarks. This License does not grant permission to use the trade
|
194 |
+
names, trademarks, service marks, or product names of the Licensor,
|
195 |
+
except as required for reasonable and customary use in describing the
|
196 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
197 |
+
|
198 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
199 |
+
agreed to in writing, Licensor provides the Work (and each
|
200 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
202 |
+
implied, including, without limitation, any warranties or conditions
|
203 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
204 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
205 |
+
appropriateness of using or redistributing the Work and assume any
|
206 |
+
risks associated with Your exercise of permissions under this License.
|
207 |
+
|
208 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
209 |
+
whether in tort (including negligence), contract, or otherwise,
|
210 |
+
unless required by applicable law (such as deliberate and grossly
|
211 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
212 |
+
liable to You for damages, including any direct, indirect, special,
|
213 |
+
incidental, or consequential damages of any character arising as a
|
214 |
+
result of this License or out of the use or inability to use the
|
215 |
+
Work (including but not limited to damages for loss of goodwill,
|
216 |
+
work stoppage, computer failure or malfunction, or any and all
|
217 |
+
other commercial damages or losses), even if such Contributor
|
218 |
+
has been advised of the possibility of such damages.
|
219 |
+
|
220 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
221 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
222 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
223 |
+
or other liability obligations and/or rights consistent with this
|
224 |
+
License. However, in accepting such obligations, You may act only
|
225 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
226 |
+
of any other Contributor, and only if You agree to indemnify,
|
227 |
+
defend, and hold each Contributor harmless for any liability
|
228 |
+
incurred by, or claims asserted against, such Contributor by reason
|
229 |
+
of your accepting any such warranty or additional liability.
|
230 |
+
|
231 |
+
END OF TERMS AND CONDITIONS
|
232 |
+
|
233 |
+
APPENDIX: How to apply the Apache License to your work.
|
234 |
+
|
235 |
+
To apply the Apache License to your work, attach the following
|
236 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
237 |
+
replaced with your own identifying information. (Don't include
|
238 |
+
the brackets!) The text should be enclosed in the appropriate
|
239 |
+
comment syntax for the file format. We also recommend that a
|
240 |
+
file or class name and description of purpose be included on the
|
241 |
+
same "printed page" as the copyright notice for easier
|
242 |
+
identification within third-party archives.
|
243 |
+
|
244 |
+
Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
245 |
+
|
246 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
247 |
+
you may not use this file except in compliance with the License.
|
248 |
+
You may obtain a copy of the License at
|
249 |
+
|
250 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
251 |
+
|
252 |
+
Unless required by applicable law or agreed to in writing, software
|
253 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
254 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
255 |
+
See the License for the specific language governing permissions and
|
256 |
+
limitations under the License.
|
257 |
+
|
258 |
+
------------- LICENSE FOR PanQiWei AutoGPTQ code --------------
|
259 |
+
|
260 |
+
MIT License
|
261 |
+
|
262 |
+
Copyright (c) 2023 潘其威(William)
|
263 |
+
|
264 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
265 |
+
of this software and associated documentation files (the "Software"), to deal
|
266 |
+
in the Software without restriction, including without limitation the rights
|
267 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
268 |
+
copies of the Software, and to permit persons to whom the Software is
|
269 |
+
furnished to do so, subject to the following conditions:
|
270 |
+
|
271 |
+
The above copyright notice and this permission notice shall be included in all
|
272 |
+
copies or substantial portions of the Software.
|
273 |
+
|
274 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
275 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
276 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
277 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
278 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
279 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
280 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -16,11 +16,11 @@ inference: false
|
|
16 |
<br>
|
17 |
|
18 |
<p align="center">
|
19 |
-
🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>   |    📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a
|
20 |
<br>
|
21 |
-
<a href="
|
22 |
</p>
|
23 |
-
<br
|
24 |
|
25 |
## 介绍 (Introduction)
|
26 |
|
@@ -260,9 +260,9 @@ If you find our work helpful, feel free to give us a cite.
|
|
260 |
|
261 |
## 使用协议(License Agreement)
|
262 |
|
263 |
-
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/
|
264 |
|
265 |
-
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/
|
266 |
<br>
|
267 |
|
268 |
## 联系我们(Contact Us)
|
|
|
16 |
<br>
|
17 |
|
18 |
<p align="center">
|
19 |
+
🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>   |    📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a>    |   🖥️ <a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>
|
20 |
<br>
|
21 |
+
<a href="assets/wechat.png">WeChat (微信)</a>   |   <a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>   |   <a href="https://dashscope.aliyun.com">API</a>
|
22 |
</p>
|
23 |
+
<br>
|
24 |
|
25 |
## 介绍 (Introduction)
|
26 |
|
|
|
260 |
|
261 |
## 使用协议(License Agreement)
|
262 |
|
263 |
+
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
|
264 |
|
265 |
+
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
|
266 |
<br>
|
267 |
|
268 |
## 联系我们(Contact Us)
|
assets/logo.jpg
CHANGED
config.json
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"initializer_range": 0.02,
|
17 |
"kv_channels": 128,
|
18 |
"layer_norm_epsilon": 1e-06,
|
19 |
-
"max_position_embeddings":
|
20 |
"model_type": "qwen",
|
21 |
"no_bias": true,
|
22 |
"num_attention_heads": 32,
|
|
|
16 |
"initializer_range": 0.02,
|
17 |
"kv_channels": 128,
|
18 |
"layer_norm_epsilon": 1e-06,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
"model_type": "qwen",
|
21 |
"no_bias": true,
|
22 |
"num_attention_heads": 32,
|
modeling_qwen.py
CHANGED
@@ -13,7 +13,6 @@ import torch
|
|
13 |
import torch.nn.functional as F
|
14 |
import torch.utils.checkpoint
|
15 |
import warnings
|
16 |
-
from torch.cuda.amp import autocast
|
17 |
|
18 |
from torch.nn import CrossEntropyLoss
|
19 |
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
@@ -79,9 +78,10 @@ We detect you have activated flash attention support, but running model computat
|
|
79 |
apply_rotary_emb_func = None
|
80 |
rms_norm = None
|
81 |
flash_attn_unpadded_func = None
|
|
|
82 |
|
83 |
def _import_flash_attn():
|
84 |
-
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
|
85 |
try:
|
86 |
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
87 |
apply_rotary_emb_func = __apply_rotary_emb_func
|
@@ -102,14 +102,18 @@ def _import_flash_attn():
|
|
102 |
|
103 |
try:
|
104 |
import flash_attn
|
|
|
105 |
if not hasattr(flash_attn, '__version__'):
|
106 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
107 |
else:
|
108 |
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
|
|
|
|
109 |
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
110 |
else:
|
111 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
112 |
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
|
|
113 |
except ImportError:
|
114 |
logger.warn(
|
115 |
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
@@ -182,6 +186,11 @@ class FlashSelfAttention(torch.nn.Module):
|
|
182 |
seqlen_k = k.shape[1]
|
183 |
seqlen_out = seqlen_q
|
184 |
|
|
|
|
|
|
|
|
|
|
|
185 |
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
186 |
cu_seqlens_q = torch.arange(
|
187 |
0,
|
@@ -311,7 +320,7 @@ class QWenAttention(nn.Module):
|
|
311 |
warnings.warn("Failed to import KV cache kernels.")
|
312 |
self.cache_kernels = None
|
313 |
|
314 |
-
def _attn(self, query, key, value,
|
315 |
device = query.device
|
316 |
if self.use_cache_quantization:
|
317 |
qk, qk_scale, qk_zero = key
|
@@ -336,26 +345,13 @@ class QWenAttention(nn.Module):
|
|
336 |
size_temp = value[0].size(-1)
|
337 |
else:
|
338 |
size_temp = value.size(-1)
|
339 |
-
attn_weights = attn_weights /
|
340 |
-
|
341 |
-
size_temp ** 0.5,
|
342 |
-
dtype=attn_weights.dtype,
|
343 |
-
device=attn_weights.device,
|
344 |
-
)
|
345 |
-
if self.use_cache_quantization:
|
346 |
-
query_length, key_length = query.size(-2), key[0].size(-2)
|
347 |
-
else:
|
348 |
-
query_length, key_length = query.size(-2), key.size(-2)
|
349 |
-
causal_mask = registered_causal_mask[
|
350 |
-
:, :, key_length - query_length : key_length, :key_length
|
351 |
-
]
|
352 |
mask_value = torch.finfo(attn_weights.dtype).min
|
353 |
-
|
354 |
-
attn_weights.
|
355 |
-
|
356 |
-
|
357 |
-
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
358 |
-
)
|
359 |
|
360 |
if attention_mask is not None:
|
361 |
attn_weights = attn_weights + attention_mask
|
@@ -482,7 +478,8 @@ class QWenAttention(nn.Module):
|
|
482 |
else:
|
483 |
present = None
|
484 |
|
485 |
-
if self.
|
|
|
486 |
if self.use_cache_quantization:
|
487 |
seq_start = key[0].size(2) - query.size(1)
|
488 |
seq_end = key[0].size(2)
|
@@ -501,15 +498,19 @@ class QWenAttention(nn.Module):
|
|
501 |
q, k, v = query, key, value
|
502 |
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
|
503 |
else:
|
504 |
-
|
505 |
-
|
506 |
-
|
|
|
|
|
|
|
|
|
507 |
query = query.permute(0, 2, 1, 3)
|
508 |
if not self.use_cache_quantization:
|
509 |
key = key.permute(0, 2, 1, 3)
|
510 |
value = value.permute(0, 2, 1, 3)
|
511 |
if (
|
512 |
-
|
513 |
and self.use_flash_attn
|
514 |
and flash_attn_unpadded_func is not None
|
515 |
and not self.is_fp32
|
@@ -518,13 +519,12 @@ class QWenAttention(nn.Module):
|
|
518 |
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
519 |
|
520 |
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
521 |
-
causal_mask = registered_causal_mask[
|
522 |
-
:, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
|
523 |
-
]
|
524 |
if attention_mask is not None:
|
525 |
attention_mask = attention_mask.expand(
|
526 |
-1, -1, causal_mask.size(2), -1
|
527 |
-
)
|
|
|
|
|
528 |
else:
|
529 |
attention_mask = causal_mask
|
530 |
attn_output = F.scaled_dot_product_attention(
|
@@ -533,7 +533,7 @@ class QWenAttention(nn.Module):
|
|
533 |
attn_weight = None
|
534 |
else:
|
535 |
attn_output, attn_weight = self._attn(
|
536 |
-
query, key, value,
|
537 |
)
|
538 |
context_layer = self._merge_heads(
|
539 |
attn_output, self.num_heads, self.head_dim
|
@@ -549,6 +549,8 @@ class QWenAttention(nn.Module):
|
|
549 |
and not self.is_fp32
|
550 |
):
|
551 |
raise ValueError("Cannot output attentions while using flash-attn")
|
|
|
|
|
552 |
else:
|
553 |
outputs += (attn_weight,)
|
554 |
|
@@ -574,6 +576,7 @@ class QWenMLP(nn.Module):
|
|
574 |
output = self.c_proj(intermediate_parallel)
|
575 |
return output
|
576 |
|
|
|
577 |
class QWenBlock(nn.Module):
|
578 |
def __init__(self, config):
|
579 |
super().__init__()
|
@@ -642,6 +645,7 @@ class QWenPreTrainedModel(PreTrainedModel):
|
|
642 |
is_parallelizable = False
|
643 |
supports_gradient_checkpointing = True
|
644 |
_no_split_modules = ["QWenBlock"]
|
|
|
645 |
|
646 |
def __init__(self, *inputs, **kwargs):
|
647 |
super().__init__(*inputs, **kwargs)
|
@@ -933,11 +937,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
933 |
assert (
|
934 |
config.bf16 + config.fp16 + config.fp32 <= 1
|
935 |
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
936 |
-
logger.warn(
|
937 |
-
"Warning: please make sure that you are using the latest codes and checkpoints, "
|
938 |
-
"especially if you used Qwen-7B before 09.25.2023."
|
939 |
-
"请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
|
940 |
-
)
|
941 |
|
942 |
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
943 |
|
@@ -990,7 +989,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
990 |
self.lm_head.half()
|
991 |
self.post_init()
|
992 |
|
993 |
-
|
994 |
def get_output_embeddings(self):
|
995 |
return self.lm_head
|
996 |
|
@@ -1000,22 +998,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1000 |
def prepare_inputs_for_generation(
|
1001 |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
1002 |
):
|
1003 |
-
token_type_ids = kwargs.get("token_type_ids", None)
|
1004 |
if past_key_values:
|
1005 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1006 |
-
if token_type_ids is not None:
|
1007 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1008 |
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
if attention_mask is not None and position_ids is None:
|
1013 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1014 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1015 |
-
if past_key_values:
|
1016 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1017 |
else:
|
1018 |
-
|
1019 |
|
1020 |
if inputs_embeds is not None and past_key_values is None:
|
1021 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
@@ -1026,9 +1015,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1026 |
{
|
1027 |
"past_key_values": past_key_values,
|
1028 |
"use_cache": kwargs.get("use_cache"),
|
1029 |
-
"position_ids": position_ids,
|
1030 |
"attention_mask": attention_mask,
|
1031 |
-
"token_type_ids": token_type_ids,
|
1032 |
}
|
1033 |
)
|
1034 |
return model_inputs
|
@@ -1299,8 +1286,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
1299 |
self._ntk_alpha_cached = 1.0
|
1300 |
self._ntk_alpha_cached_list = [1.0]
|
1301 |
|
1302 |
-
def update_rotary_pos_emb_cache(self,
|
1303 |
-
seqlen = max_seq_len + offset
|
1304 |
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1305 |
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1306 |
self.inv_freq = 1.0 / (
|
@@ -1323,10 +1309,10 @@ class RotaryEmbedding(torch.nn.Module):
|
|
1323 |
cos, sin = emb.cos(), emb.sin()
|
1324 |
self._rotary_pos_emb_cache = [cos, sin]
|
1325 |
|
1326 |
-
def forward(self, max_seq_len,
|
1327 |
-
self.update_rotary_pos_emb_cache(max_seq_len,
|
1328 |
cos, sin = self._rotary_pos_emb_cache
|
1329 |
-
return [cos[:,
|
1330 |
|
1331 |
|
1332 |
def _rotate_half(x):
|
@@ -1338,21 +1324,28 @@ def _rotate_half(x):
|
|
1338 |
|
1339 |
|
1340 |
def apply_rotary_pos_emb(t, freqs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1341 |
cos, sin = freqs
|
|
|
1342 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
|
|
1348 |
else:
|
1349 |
-
|
1350 |
-
cos
|
1351 |
-
|
1352 |
-
t_ = t_.float()
|
1353 |
-
t_pass_ = t_pass_.float()
|
1354 |
-
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
1355 |
-
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1356 |
|
1357 |
|
1358 |
class RMSNorm(torch.nn.Module):
|
|
|
13 |
import torch.nn.functional as F
|
14 |
import torch.utils.checkpoint
|
15 |
import warnings
|
|
|
16 |
|
17 |
from torch.nn import CrossEntropyLoss
|
18 |
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
|
|
78 |
apply_rotary_emb_func = None
|
79 |
rms_norm = None
|
80 |
flash_attn_unpadded_func = None
|
81 |
+
flash_attn_func = None
|
82 |
|
83 |
def _import_flash_attn():
|
84 |
+
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
|
85 |
try:
|
86 |
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
87 |
apply_rotary_emb_func = __apply_rotary_emb_func
|
|
|
102 |
|
103 |
try:
|
104 |
import flash_attn
|
105 |
+
_flash_attn_func = None
|
106 |
if not hasattr(flash_attn, '__version__'):
|
107 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
108 |
else:
|
109 |
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
110 |
+
if int(flash_attn.__version__.split(".")[1]) >= 1:
|
111 |
+
from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
|
112 |
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
113 |
else:
|
114 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
115 |
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
116 |
+
flash_attn_func = _flash_attn_func
|
117 |
except ImportError:
|
118 |
logger.warn(
|
119 |
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
|
|
186 |
seqlen_k = k.shape[1]
|
187 |
seqlen_out = seqlen_q
|
188 |
|
189 |
+
if flash_attn_func is not None and batch_size == 1:
|
190 |
+
dropout_p = self.dropout_p if self.training else 0
|
191 |
+
output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
|
192 |
+
return output
|
193 |
+
|
194 |
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
195 |
cu_seqlens_q = torch.arange(
|
196 |
0,
|
|
|
320 |
warnings.warn("Failed to import KV cache kernels.")
|
321 |
self.cache_kernels = None
|
322 |
|
323 |
+
def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
|
324 |
device = query.device
|
325 |
if self.use_cache_quantization:
|
326 |
qk, qk_scale, qk_zero = key
|
|
|
345 |
size_temp = value[0].size(-1)
|
346 |
else:
|
347 |
size_temp = value.size(-1)
|
348 |
+
attn_weights = attn_weights / (size_temp ** 0.5)
|
349 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
mask_value = torch.finfo(attn_weights.dtype).min
|
351 |
+
if causal_mask is not None:
|
352 |
+
attn_weights = torch.where(
|
353 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
354 |
+
)
|
|
|
|
|
355 |
|
356 |
if attention_mask is not None:
|
357 |
attn_weights = attn_weights + attention_mask
|
|
|
478 |
else:
|
479 |
present = None
|
480 |
|
481 |
+
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
482 |
+
if key_size > self.seq_length and self.use_logn_attn and not self.training:
|
483 |
if self.use_cache_quantization:
|
484 |
seq_start = key[0].size(2) - query.size(1)
|
485 |
seq_end = key[0].size(2)
|
|
|
498 |
q, k, v = query, key, value
|
499 |
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
|
500 |
else:
|
501 |
+
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
502 |
+
if query.size(1) == key_size:
|
503 |
+
causal_mask = torch.tril(
|
504 |
+
torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
|
505 |
+
).view(1, 1, key_size, key_size)
|
506 |
+
else:
|
507 |
+
causal_mask = None
|
508 |
query = query.permute(0, 2, 1, 3)
|
509 |
if not self.use_cache_quantization:
|
510 |
key = key.permute(0, 2, 1, 3)
|
511 |
value = value.permute(0, 2, 1, 3)
|
512 |
if (
|
513 |
+
causal_mask is None
|
514 |
and self.use_flash_attn
|
515 |
and flash_attn_unpadded_func is not None
|
516 |
and not self.is_fp32
|
|
|
519 |
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
520 |
|
521 |
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
|
|
|
|
|
|
522 |
if attention_mask is not None:
|
523 |
attention_mask = attention_mask.expand(
|
524 |
-1, -1, causal_mask.size(2), -1
|
525 |
+
)
|
526 |
+
if causal_mask is not None:
|
527 |
+
attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
|
528 |
else:
|
529 |
attention_mask = causal_mask
|
530 |
attn_output = F.scaled_dot_product_attention(
|
|
|
533 |
attn_weight = None
|
534 |
else:
|
535 |
attn_output, attn_weight = self._attn(
|
536 |
+
query, key, value, causal_mask, attention_mask, head_mask
|
537 |
)
|
538 |
context_layer = self._merge_heads(
|
539 |
attn_output, self.num_heads, self.head_dim
|
|
|
549 |
and not self.is_fp32
|
550 |
):
|
551 |
raise ValueError("Cannot output attentions while using flash-attn")
|
552 |
+
elif not self.use_cache_quantization and SUPPORT_TORCH2:
|
553 |
+
raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
|
554 |
else:
|
555 |
outputs += (attn_weight,)
|
556 |
|
|
|
576 |
output = self.c_proj(intermediate_parallel)
|
577 |
return output
|
578 |
|
579 |
+
|
580 |
class QWenBlock(nn.Module):
|
581 |
def __init__(self, config):
|
582 |
super().__init__()
|
|
|
645 |
is_parallelizable = False
|
646 |
supports_gradient_checkpointing = True
|
647 |
_no_split_modules = ["QWenBlock"]
|
648 |
+
_skip_keys_device_placement = "past_key_values"
|
649 |
|
650 |
def __init__(self, *inputs, **kwargs):
|
651 |
super().__init__(*inputs, **kwargs)
|
|
|
937 |
assert (
|
938 |
config.bf16 + config.fp16 + config.fp32 <= 1
|
939 |
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
|
|
|
|
|
|
|
|
|
|
940 |
|
941 |
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
942 |
|
|
|
989 |
self.lm_head.half()
|
990 |
self.post_init()
|
991 |
|
|
|
992 |
def get_output_embeddings(self):
|
993 |
return self.lm_head
|
994 |
|
|
|
998 |
def prepare_inputs_for_generation(
|
999 |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
1000 |
):
|
|
|
1001 |
if past_key_values:
|
1002 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
1003 |
|
1004 |
+
if input_ids.size(0) == 1:
|
1005 |
+
attention_mask = None
|
|
|
|
|
|
|
|
|
|
|
|
|
1006 |
else:
|
1007 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1008 |
|
1009 |
if inputs_embeds is not None and past_key_values is None:
|
1010 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
|
1015 |
{
|
1016 |
"past_key_values": past_key_values,
|
1017 |
"use_cache": kwargs.get("use_cache"),
|
|
|
1018 |
"attention_mask": attention_mask,
|
|
|
1019 |
}
|
1020 |
)
|
1021 |
return model_inputs
|
|
|
1286 |
self._ntk_alpha_cached = 1.0
|
1287 |
self._ntk_alpha_cached_list = [1.0]
|
1288 |
|
1289 |
+
def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
|
|
|
1290 |
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1291 |
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1292 |
self.inv_freq = 1.0 / (
|
|
|
1309 |
cos, sin = emb.cos(), emb.sin()
|
1310 |
self._rotary_pos_emb_cache = [cos, sin]
|
1311 |
|
1312 |
+
def forward(self, max_seq_len, ntk_alpha=1.0):
|
1313 |
+
self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
|
1314 |
cos, sin = self._rotary_pos_emb_cache
|
1315 |
+
return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
|
1316 |
|
1317 |
|
1318 |
def _rotate_half(x):
|
|
|
1324 |
|
1325 |
|
1326 |
def apply_rotary_pos_emb(t, freqs):
|
1327 |
+
""" Apply rotary embedding to the first rotary_dim of the iput
|
1328 |
+
|
1329 |
+
Arguments:
|
1330 |
+
t (tensor(batch_size, seq_len, n_head, head_dim)):
|
1331 |
+
the input embedding/hidden states
|
1332 |
+
freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
|
1333 |
+
the cached cos/sin position embeddings
|
1334 |
+
"""
|
1335 |
+
rot_dim = freqs[0].shape[-1]
|
1336 |
cos, sin = freqs
|
1337 |
+
t_float = t.float()
|
1338 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
1339 |
+
# apply_rotary_emb in flash_attn requires cos/sin to be of
|
1340 |
+
# shape (seqlen, rotary_dim / 2) and apply rotary embedding
|
1341 |
+
# to the first rotary_dim of the input
|
1342 |
+
cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
1343 |
+
sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
1344 |
+
return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
|
1345 |
else:
|
1346 |
+
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
|
1347 |
+
t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
|
1348 |
+
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
|
|
|
|
|
|
|
|
1349 |
|
1350 |
|
1351 |
class RMSNorm(torch.nn.Module):
|
tokenizer_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"model_max_length":
|
3 |
"tokenizer_class": "QWenTokenizer",
|
4 |
"auto_map": {
|
5 |
"AutoTokenizer": [
|
|
|
1 |
{
|
2 |
+
"model_max_length": 32768,
|
3 |
"tokenizer_class": "QWenTokenizer",
|
4 |
"auto_map": {
|
5 |
"AutoTokenizer": [
|