JustinLin610
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -48,23 +48,31 @@ Here provides a code snippet with `apply_chat_template` to show you how to load
|
|
48 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
49 |
device = "cuda" # the device to load the model onto
|
50 |
|
51 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
52 |
tokenizer = AutoTokenizer.from_pretrained("Qwen2/Qwen2-beta-14B-Chat")
|
53 |
|
54 |
prompt = "Give me a short introduction to large language model."
|
55 |
-
|
56 |
messages = [
|
57 |
{"role": "system", "content": "You are a helpful assistant."},
|
58 |
{"role": "user", "content": prompt}
|
59 |
]
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
64 |
|
65 |
-
generated_ids = model.generate(
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
```
|
|
|
48 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
49 |
device = "cuda" # the device to load the model onto
|
50 |
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
"Qwen2/Qwen2-beta-14B-Chat",
|
53 |
+
device_map="auto"
|
54 |
+
)
|
55 |
tokenizer = AutoTokenizer.from_pretrained("Qwen2/Qwen2-beta-14B-Chat")
|
56 |
|
57 |
prompt = "Give me a short introduction to large language model."
|
|
|
58 |
messages = [
|
59 |
{"role": "system", "content": "You are a helpful assistant."},
|
60 |
{"role": "user", "content": prompt}
|
61 |
]
|
62 |
+
text = tokenizer.apply_chat_template(
|
63 |
+
messages,
|
64 |
+
tokenize=False,
|
65 |
+
add_generation_prompt=True
|
66 |
+
)
|
67 |
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
68 |
|
69 |
+
generated_ids = model.generate(
|
70 |
+
model_inputs.input_ids,
|
71 |
+
max_new_tokens=512
|
72 |
+
)
|
73 |
+
generated_ids = [
|
74 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
75 |
+
]
|
76 |
|
77 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
78 |
```
|