RANITBAG commited on
Commit
9c6fb12
1 Parent(s): 1b434d3

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -168
model.py DELETED
@@ -1,168 +0,0 @@
1
- from transformers import PreTrainedModel
2
- import torch
3
- import torch.nn as nn
4
- from torch.nn import functional as F
5
- from config import CustomAIConfig
6
- batch_size = 4
7
- block_size = 128
8
- max_iters = 10
9
- learning_rate = 3e-4
10
- eval_iters = 100
11
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
12
- print(device)
13
- # n_embd = 384
14
- # n_head = 4
15
- # n_layer = 4
16
- dropout = 0.2
17
- # vocab_size=1000
18
- # model architecture
19
- class Head(nn.Module):
20
- """ one head of self-attention """
21
-
22
- def __init__(self, n_embd, head_size):
23
- super().__init__()
24
- self.key = nn.Linear(n_embd, head_size, bias=False)
25
- self.query = nn.Linear(n_embd, head_size, bias=False)
26
- self.value = nn.Linear(n_embd, head_size, bias=False)
27
- self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
28
-
29
- self.dropout = nn.Dropout(dropout)
30
-
31
- def forward(self, x):
32
- # input of size (batch, time-step, channels)
33
- # output of size (batch, time-step, head size)
34
- B,T,C = x.shape
35
- k = self.key(x) # (B,T,hs)
36
- q = self.query(x) # (B,T,hs)
37
- # compute attention scores ("affinities")
38
- wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
39
- wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
40
- wei = F.softmax(wei, dim=-1) # (B, T, T)
41
- wei = self.dropout(wei)
42
- # perform the weighted aggregation of the values
43
- v = self.value(x) # (B,T,hs)
44
- out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
45
- return out
46
-
47
-
48
- class MultiHeadAttention(nn.Module):
49
- """ multiple heads of self-attention in parallel """
50
-
51
- def __init__(self, num_heads, head_size, n_embd):
52
- super().__init__()
53
- self.heads = nn.ModuleList([Head(n_embd,head_size) for _ in range(num_heads)])
54
- self.proj = nn.Linear(head_size * num_heads, n_embd)
55
- self.dropout = nn.Dropout(dropout)
56
-
57
- def forward(self, x):
58
- out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, F) -> (B, T, [h1, h1, h1, h1, h2, h2, h2, h2, h3, h3, h3, h3])
59
- out = self.dropout(self.proj(out))
60
- return out
61
-
62
- class FeedFoward(nn.Module):
63
- """ a simple linear layer followed by a non-linearity """
64
-
65
- def __init__(self, n_embd):
66
- super().__init__()
67
- self.net = nn.Sequential(
68
- nn.Linear(n_embd, 4 * n_embd),
69
- nn.ReLU(),
70
- nn.Linear(4 * n_embd, n_embd),
71
- nn.Dropout(dropout),
72
- )
73
-
74
- def forward(self, x):
75
- return self.net(x)
76
-
77
- class Block(nn.Module):
78
- """ Transformer block: communication followed by computation """
79
-
80
- def __init__(self, n_embd, n_head):
81
- # n_embd: embedding dimension, n_head: the number of heads we'd like
82
- super().__init__()
83
- head_size = n_embd // n_head
84
- self.sa = MultiHeadAttention(n_head, head_size,n_embd)
85
- self.ffwd = FeedFoward(n_embd)
86
- self.ln1 = nn.LayerNorm(n_embd)
87
- self.ln2 = nn.LayerNorm(n_embd)
88
-
89
-
90
- def forward(self, x):
91
- y = self.sa(x)
92
- x = self.ln1(x + y)
93
- y = self.ffwd(x)
94
- x = self.ln2(x + y)
95
- return x
96
-
97
- class CustomAI(PreTrainedModel):
98
- config_class = CustomAIConfig
99
- def __init__(self, config):
100
- super().__init__(config)
101
- self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd)
102
- self.position_embedding_table = nn.Embedding(block_size, config.n_embd)
103
- self.blocks = nn.Sequential(*[Block(config.n_embd, n_head=config.n_head) for _ in range(config.n_layer)])
104
- self.ln_f = nn.LayerNorm(config.n_embd) # final layer norm
105
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
106
-
107
- self.apply(self._init_weights)
108
-
109
-
110
-
111
- def _init_weights(self, module):
112
- if isinstance(module, nn.Linear):
113
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
114
- if module.bias is not None:
115
- torch.nn.init.zeros_(module.bias)
116
- elif isinstance(module, nn.Embedding):
117
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
118
-
119
- def forward(self, index, targets=None):
120
- B, T = index.shape
121
-
122
-
123
- # idx and targets are both (B,T) tensor of integers
124
- tok_emb = self.token_embedding_table(index) # (B,T,C)
125
- pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
126
- x = tok_emb + pos_emb # (B,T,C)
127
- x = self.blocks(x) # (B,T,C)
128
- x = self.ln_f(x) # (B,T,C)
129
- logits = self.lm_head(x) # (B,T,vocab_size)
130
-
131
- if targets is None:
132
- loss = None
133
- else:
134
- B, T, C = logits.shape
135
- logits = logits.view(B*T, C)
136
- targets = targets.view(B*T)
137
- loss = F.cross_entropy(logits, targets)
138
-
139
- return logits, loss
140
-
141
- def generate(self, index, max_new_tokens):
142
- # index is (B, T) array of indices in the current context
143
- for _ in range(max_new_tokens):
144
- # crop idx to the last block_size tokens
145
- index_cond = index[:, -block_size:]
146
- # get the predictions
147
- logits, loss = self.forward(index_cond)
148
- # focus only on the last time step
149
- logits = logits[:, -1, :] # becomes (B, C)
150
- # apply softmax to get probabilities
151
- probs = F.softmax(logits, dim=-1) # (B, C)
152
- # sample from the distribution
153
- index_next = torch.multinomial(probs, num_samples=1) # (B, 1)
154
- # append sampled index to the running sequence
155
- index = torch.cat((index, index_next), dim=1) # (B, T+1)
156
- return index
157
- config = CustomAIConfig(
158
- vocab_size=1000,
159
- n_embd=384,
160
- n_head=4,
161
- n_layer=4,
162
- dropout=0.2,
163
- # any other parameters you want to set
164
- )
165
- model = CustomAI(config)
166
- # model.load_state_dict(torch.load('/content/BharatAI.pth'))
167
-
168
-