|
import torch |
|
import torch.nn as nn |
|
import torchvision |
|
|
|
from .ResNet import ResNet50 |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
class TransBasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, upsample=None, **kwargs): |
|
super(TransBasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, inplanes) |
|
self.bn1 = nn.BatchNorm2d(inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
if upsample is not None and stride != 1: |
|
self.conv2 = nn.ConvTranspose2d( |
|
inplanes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
output_padding=1, |
|
bias=False, |
|
) |
|
else: |
|
self.conv2 = conv3x3(inplanes, planes, stride) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.upsample = upsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.upsample is not None: |
|
residual = self.upsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
def __init__(self, in_planes, ratio=16): |
|
super(ChannelAttention, self).__init__() |
|
|
|
self.max_pool = nn.AdaptiveMaxPool2d(1) |
|
|
|
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) |
|
self.relu1 = nn.ReLU() |
|
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) |
|
out = max_out |
|
return self.sigmoid(out) |
|
|
|
|
|
class SpatialAttention(nn.Module): |
|
def __init__(self, kernel_size=7): |
|
super(SpatialAttention, self).__init__() |
|
|
|
assert kernel_size in (3, 7), "kernel size must be 3 or 7" |
|
padding = 3 if kernel_size == 7 else 1 |
|
|
|
self.conv1 = nn.Conv2d(1, 1, kernel_size, padding=padding, bias=False) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
max_out, _ = torch.max(x, dim=1, keepdim=True) |
|
x = max_out |
|
x = self.conv1(x) |
|
return self.sigmoid(x) |
|
|
|
|
|
class BasicConv2d(nn.Module): |
|
def __init__( |
|
self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1 |
|
): |
|
super(BasicConv2d, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=False, |
|
) |
|
self.bn = nn.BatchNorm2d(out_planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
|
|
class GCM(nn.Module): |
|
def __init__(self, in_channel, out_channel): |
|
super(GCM, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
self.branch0 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
) |
|
self.branch1 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=3, dilation=3), |
|
) |
|
self.branch2 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=5, dilation=5), |
|
) |
|
self.branch3 = nn.Sequential( |
|
BasicConv2d(in_channel, out_channel, 1), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)), |
|
BasicConv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)), |
|
BasicConv2d(out_channel, out_channel, 3, padding=7, dilation=7), |
|
) |
|
self.conv_cat = BasicConv2d(4 * out_channel, out_channel, 3, padding=1) |
|
self.conv_res = BasicConv2d(in_channel, out_channel, 1) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
|
|
x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1)) |
|
|
|
x = self.relu(x_cat + self.conv_res(x)) |
|
return x |
|
|
|
|
|
|
|
class aggregation_init(nn.Module): |
|
def __init__(self, channel): |
|
super(aggregation_init, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) |
|
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) |
|
|
|
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) |
|
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) |
|
self.conv4 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) |
|
self.conv5 = nn.Conv2d(3 * channel, 1, 1) |
|
|
|
def forward(self, x1, x2, x3): |
|
x1_1 = x1 |
|
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2 |
|
x3_1 = ( |
|
self.conv_upsample2(self.upsample(self.upsample(x1))) |
|
* self.conv_upsample3(self.upsample(x2)) |
|
* x3 |
|
) |
|
|
|
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) |
|
x2_2 = self.conv_concat2(x2_2) |
|
|
|
x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1) |
|
x3_2 = self.conv_concat3(x3_2) |
|
|
|
x = self.conv4(x3_2) |
|
x = self.conv5(x) |
|
|
|
return x |
|
|
|
|
|
|
|
class aggregation_final(nn.Module): |
|
def __init__(self, channel): |
|
super(aggregation_final, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) |
|
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1) |
|
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) |
|
|
|
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) |
|
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) |
|
|
|
def forward(self, x1, x2, x3): |
|
x1_1 = x1 |
|
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2 |
|
x3_1 = self.conv_upsample2(self.upsample(x1)) * self.conv_upsample3(x2) * x3 |
|
|
|
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) |
|
x2_2 = self.conv_concat2(x2_2) |
|
|
|
x3_2 = torch.cat((x3_1, self.conv_upsample5(x2_2)), 1) |
|
x3_2 = self.conv_concat3(x3_2) |
|
|
|
return x3_2 |
|
|
|
|
|
|
|
class Refine(nn.Module): |
|
def __init__(self): |
|
super(Refine, self).__init__() |
|
self.upsample2 = nn.Upsample( |
|
scale_factor=2, mode="bilinear", align_corners=True |
|
) |
|
|
|
def forward(self, attention, x1, x2, x3): |
|
|
|
x1 = x1 + torch.mul(x1, self.upsample2(attention)) |
|
x2 = x2 + torch.mul(x2, self.upsample2(attention)) |
|
x3 = x3 + torch.mul(x3, attention) |
|
|
|
return x1, x2, x3 |
|
|
|
|
|
|
|
class BBSNet(nn.Module): |
|
def __init__(self, channel=32): |
|
super(BBSNet, self).__init__() |
|
|
|
|
|
self.resnet = ResNet50("rgb") |
|
self.resnet_depth = ResNet50("rgbd") |
|
|
|
|
|
self.rfb2_1 = GCM(512, channel) |
|
self.rfb3_1 = GCM(1024, channel) |
|
self.rfb4_1 = GCM(2048, channel) |
|
self.agg1 = aggregation_init(channel) |
|
|
|
|
|
self.rfb0_2 = GCM(64, channel) |
|
self.rfb1_2 = GCM(256, channel) |
|
self.rfb5_2 = GCM(512, channel) |
|
self.agg2 = aggregation_final(channel) |
|
|
|
|
|
self.upsample = nn.Upsample(scale_factor=8, mode="bilinear", align_corners=True) |
|
self.upsample4 = nn.Upsample( |
|
scale_factor=4, mode="bilinear", align_corners=True |
|
) |
|
self.upsample2 = nn.Upsample( |
|
scale_factor=2, mode="bilinear", align_corners=True |
|
) |
|
|
|
|
|
self.HA = Refine() |
|
|
|
|
|
self.atten_depth_channel_0 = ChannelAttention(64) |
|
self.atten_depth_channel_1 = ChannelAttention(256) |
|
self.atten_depth_channel_2 = ChannelAttention(512) |
|
self.atten_depth_channel_3_1 = ChannelAttention(1024) |
|
self.atten_depth_channel_4_1 = ChannelAttention(2048) |
|
|
|
self.atten_depth_spatial_0 = SpatialAttention() |
|
self.atten_depth_spatial_1 = SpatialAttention() |
|
self.atten_depth_spatial_2 = SpatialAttention() |
|
self.atten_depth_spatial_3_1 = SpatialAttention() |
|
self.atten_depth_spatial_4_1 = SpatialAttention() |
|
|
|
|
|
self.inplanes = 32 * 2 |
|
self.deconv1 = self._make_transpose(TransBasicBlock, 32 * 2, 3, stride=2) |
|
self.inplanes = 32 |
|
self.deconv2 = self._make_transpose(TransBasicBlock, 32, 3, stride=2) |
|
self.agant1 = self._make_agant_layer(32 * 3, 32 * 2) |
|
self.agant2 = self._make_agant_layer(32 * 2, 32) |
|
self.out0_conv = nn.Conv2d(32 * 3, 1, kernel_size=1, stride=1, bias=True) |
|
self.out1_conv = nn.Conv2d(32 * 2, 1, kernel_size=1, stride=1, bias=True) |
|
self.out2_conv = nn.Conv2d(32 * 1, 1, kernel_size=1, stride=1, bias=True) |
|
|
|
if self.training: |
|
self.initialize_weights() |
|
|
|
def forward(self, x, x_depth): |
|
x = self.resnet.conv1(x) |
|
x = self.resnet.bn1(x) |
|
x = self.resnet.relu(x) |
|
x = self.resnet.maxpool(x) |
|
|
|
x_depth = self.resnet_depth.conv1(x_depth) |
|
x_depth = self.resnet_depth.bn1(x_depth) |
|
x_depth = self.resnet_depth.relu(x_depth) |
|
x_depth = self.resnet_depth.maxpool(x_depth) |
|
|
|
|
|
temp = x_depth.mul(self.atten_depth_channel_0(x_depth)) |
|
temp = temp.mul(self.atten_depth_spatial_0(temp)) |
|
x = x + temp |
|
|
|
|
|
x1 = self.resnet.layer1(x) |
|
x1_depth = self.resnet_depth.layer1(x_depth) |
|
|
|
|
|
temp = x1_depth.mul(self.atten_depth_channel_1(x1_depth)) |
|
temp = temp.mul(self.atten_depth_spatial_1(temp)) |
|
x1 = x1 + temp |
|
|
|
|
|
x2 = self.resnet.layer2(x1) |
|
x2_depth = self.resnet_depth.layer2(x1_depth) |
|
|
|
|
|
temp = x2_depth.mul(self.atten_depth_channel_2(x2_depth)) |
|
temp = temp.mul(self.atten_depth_spatial_2(temp)) |
|
x2 = x2 + temp |
|
|
|
|
|
x2_1 = x2 |
|
|
|
x3_1 = self.resnet.layer3_1(x2_1) |
|
x3_1_depth = self.resnet_depth.layer3_1(x2_depth) |
|
|
|
|
|
temp = x3_1_depth.mul(self.atten_depth_channel_3_1(x3_1_depth)) |
|
temp = temp.mul(self.atten_depth_spatial_3_1(temp)) |
|
x3_1 = x3_1 + temp |
|
|
|
|
|
x4_1 = self.resnet.layer4_1(x3_1) |
|
x4_1_depth = self.resnet_depth.layer4_1(x3_1_depth) |
|
|
|
|
|
temp = x4_1_depth.mul(self.atten_depth_channel_4_1(x4_1_depth)) |
|
temp = temp.mul(self.atten_depth_spatial_4_1(temp)) |
|
x4_1 = x4_1 + temp |
|
|
|
|
|
|
|
x2_1 = self.rfb2_1(x2_1) |
|
x3_1 = self.rfb3_1(x3_1) |
|
x4_1 = self.rfb4_1(x4_1) |
|
attention_map = self.agg1(x4_1, x3_1, x2_1) |
|
|
|
|
|
x, x1, x5 = self.HA(attention_map.sigmoid(), x, x1, x2) |
|
|
|
|
|
x0_2 = self.rfb0_2(x) |
|
x1_2 = self.rfb1_2(x1) |
|
x5_2 = self.rfb5_2(x5) |
|
y = self.agg2(x5_2, x1_2, x0_2) |
|
|
|
|
|
y = self.agant1(y) |
|
y = self.deconv1(y) |
|
y = self.agant2(y) |
|
y = self.deconv2(y) |
|
y = self.out2_conv(y) |
|
|
|
return self.upsample(attention_map), y |
|
|
|
def _make_agant_layer(self, inplanes, planes): |
|
layers = nn.Sequential( |
|
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.BatchNorm2d(planes), |
|
nn.ReLU(inplace=True), |
|
) |
|
return layers |
|
|
|
def _make_transpose(self, block, planes, blocks, stride=1): |
|
upsample = None |
|
if stride != 1: |
|
upsample = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
self.inplanes, |
|
planes, |
|
kernel_size=2, |
|
stride=stride, |
|
padding=0, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(planes), |
|
) |
|
elif self.inplanes != planes: |
|
upsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, planes, kernel_size=1, stride=stride, bias=False |
|
), |
|
nn.BatchNorm2d(planes), |
|
) |
|
|
|
layers = [] |
|
|
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, self.inplanes)) |
|
|
|
layers.append(block(self.inplanes, planes, stride, upsample)) |
|
self.inplanes = planes |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def initialize_weights(self): |
|
res50 = torchvision.models.resnet50(pretrained=True) |
|
pretrained_dict = res50.state_dict() |
|
all_params = {} |
|
for k, v in self.resnet.state_dict().items(): |
|
if k in pretrained_dict.keys(): |
|
v = pretrained_dict[k] |
|
all_params[k] = v |
|
elif "_1" in k: |
|
name = k.split("_1")[0] + k.split("_1")[1] |
|
v = pretrained_dict[name] |
|
all_params[k] = v |
|
elif "_2" in k: |
|
name = k.split("_2")[0] + k.split("_2")[1] |
|
v = pretrained_dict[name] |
|
all_params[k] = v |
|
assert len(all_params.keys()) == len(self.resnet.state_dict().keys()) |
|
self.resnet.load_state_dict(all_params) |
|
|
|
all_params = {} |
|
for k, v in self.resnet_depth.state_dict().items(): |
|
if k == "conv1.weight": |
|
all_params[k] = torch.nn.init.normal_(v, mean=0, std=1) |
|
elif k in pretrained_dict.keys(): |
|
v = pretrained_dict[k] |
|
all_params[k] = v |
|
elif "_1" in k: |
|
name = k.split("_1")[0] + k.split("_1")[1] |
|
v = pretrained_dict[name] |
|
all_params[k] = v |
|
elif "_2" in k: |
|
name = k.split("_2")[0] + k.split("_2")[1] |
|
v = pretrained_dict[name] |
|
all_params[k] = v |
|
assert len(all_params.keys()) == len(self.resnet_depth.state_dict().keys()) |
|
self.resnet_depth.load_state_dict(all_params) |
|
|