Feature Extraction
Transformers
PyTorch
bbsnet
custom_code
bbsnet / modeling_bbsnet.py
thinh-huynh-re's picture
Upload model
e674a89
from typing import Dict, Optional
from torch import Tensor, nn
from transformers import PreTrainedModel
from .configuration_bbsnet import BBSNetConfig
from .BBSNet_model import BBSNet
class BBSNetModel(PreTrainedModel):
"""
The line that sets the config_class is not mandatory,
unless you want to register your model with the auto classes
"""
config_class = BBSNetConfig
def __init__(self, config: BBSNetConfig):
super().__init__(config)
self.model = BBSNet()
self.loss = nn.BCEWithLogitsLoss()
"""
You can have your model return anything you want,
but returning a dictionary with the loss included when labels are passed,
will make your model directly usable inside the Trainer class.
Using another output format is fine as long as you are planning on
using your own training loop or another library for training.
"""
def forward(
self, rgbs: Tensor, depths: Tensor, gts: Optional[Tensor] = None
) -> Dict[str, Tensor]:
_, logits = self.model(rgbs, depths)
if gts is not None:
loss = self.loss(logits, gts)
return {"loss": loss, "logits": logits}
return {"logits": logits}
if __name__ == "__main__":
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
resnet50d = ResnetModelForImageClassification(resnet50d_config)
# Load pretrained weights from timm
pretrained_model: nn.Module = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())