---
license: mit
datasets:
- RGBD-SOD/rgbdsod_datasets
---
# Model Card for Model ID
## Model Details
### Model Description
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
- **Repository:** https://github.com/DengPingFan/BBS-Net
- **Paper [optional]:** [BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network, 2020](https://arxiv.org/abs/2007.02713)
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
```python
from typing import Dict
import numpy as np
from datasets import load_dataset
from matplotlib import cm
from PIL import Image
from torch import Tensor
from transformers import AutoImageProcessor, AutoModel
model = AutoModel.from_pretrained("RGBD-SOD/bbsnet", trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
"RGBD-SOD/bbsnet", trust_remote_code=True
)
dataset = load_dataset("RGBD-SOD/test", "v1", split="train", cache_dir="data")
index = 0
"""
Get a specific sample from the dataset
sample = {
'depth': ,
'rgb': ,
'gt': ,
'name': 'COME_Train_5'
}
"""
sample = dataset[index]
depth: Image.Image = sample["depth"]
rgb: Image.Image = sample["rgb"]
gt: Image.Image = sample["gt"]
name: str = sample["name"]
"""
1. Preprocessing step
preprocessed_sample = {
'rgb': tensor([[[[-0.8507, ....0365]]]]),
'gt': tensor([[[[0., 0., 0...., 0.]]]]),
'depth': tensor([[[[0.9529, 0....3490]]]])
}
"""
preprocessed_sample: Dict[str, Tensor] = image_processor.preprocess(sample)
"""
2. Prediction step
output = {
'logits': tensor([[[[-5.1966, ...ackward0>)
}
"""
output: Dict[str, Tensor] = model(
preprocessed_sample["rgb"], preprocessed_sample["depth"]
)
"""
3. Postprocessing step
"""
postprocessed_sample: np.ndarray = image_processor.postprocess(
output["logits"], [sample["gt"].size[1], sample["gt"].size[0]]
)
prediction = Image.fromarray(np.uint8(cm.gist_earth(postprocessed_sample) * 255))
"""
Show the predicted salient map and the corresponding ground-truth(GT)
"""
prediction.show()
gt.show()
```
### Downstream Use [optional]
[More Information Needed]
### Out-of-Scope Use
[More Information Needed]
## Bias, Risks, and Limitations
[More Information Needed]
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
### How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
[More Information Needed]
### Training Procedure
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed]
#### Speeds, Sizes, Times [optional]
[More Information Needed]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
[More Information Needed]
#### Factors
[More Information Needed]
#### Metrics
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
[More Information Needed]
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
**BibTeX:**
```
@inproceedings{fan2020bbs,
title={BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network},
author={Fan, Deng-Ping and Zhai, Yingjie and Borji, Ali and Yang, Jufeng and Shao, Ling},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XII},
pages={275--292},
year={2020},
organization={Springer}
}
```
**APA:**
[More Information Needed]
## Glossary [optional]
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]