ppo-LunarLander-v2 / config.json
IAmAIReally's picture
first try
00e9ea3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eaee9a2a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eaee9a2a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eaee9a2a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eaee9a2a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7eaee9a2aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7eaee9a2ab00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eaee9a2ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eaee9a2ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7eaee9a2acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eaee9a2ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eaee9a2add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eaee9a2ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eaee9a2d100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697291487391119578, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGacVjxxEUY6jvu+N+3djDVKI5W7WG3xtgAAgD8AAIA/MzS+PB4Tyz3SjLw8uVOVvkRirj3RUAy+AAAAAAAAAAAzIfi8jyYRuuLlGjuelNq0gHyqujMT2bMAAIA/AACAP5oa7zz2LFi6PCgzO7qmozfjITa6oo74uQAAgD8AAIA/ZorVu3s+hrq5oqw6d9EwtejpUrsab8W5AACAPwAAgD9milQ8XEMsuroESbqi2lU1y8uRu35EbDkAAIA/AACAP2aly7xc0326TXSMuYxIy7QB5b856UKhOAAAgD8AAIA/TaEmPRRgsLo9Q445arOENNE3oLkRvKK4AACAPwAAgD/NDJa7PWYwu7tJXD1A63u+hyYkvIGwRjwAAIA/AAAAAJodSD24Vrm5kjuauedrIzZZZom6cbyzOAAAgD8AAIA/mvGYPVxrTLoL5Hg6TxmGNSv+Mjqzp4y5AACAPwAAgD/NdGK7AY6FvKJZGLqNBSI9hrTvvayWwr0AAIA/AACAP83c6LzDAV66SDngunc64LXHrY25SvADOgAAgD8AAIA/M5GcPCnkILoeb0G7HggsN0PgmzveWBw6AACAPwAAgD/Nelu89kBNuqNR3DtzI4o2wh4wu0wHgzUAAIA/AACAPwC4ADz2hCe6sMThOOKZgTQe0ok7HhEDuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEw9BlcyFf2MAWyUS7eMAXSUR0CgT5di2DxtdX2UKGgGR0BnHiExqO94aAdN6ANoCEdAoFHR2+wkgXV9lChoBkdAZIwCGN70F2gHTegDaAhHQKBT+v2Xb/R1fZQoaAZHQGBaDg62fChoB03oA2gIR0CgVL90zTF3dX2UKGgGR0BQ5k+X7cfvaAdLw2gIR0CgWoVaW5YpdX2UKGgGR0BgWpoqTbFkaAdN6ANoCEdAoFtVGoaUA3V9lChoBkdAYkWmALApKGgHTegDaAhHQKBeYjzqbBp1fZQoaAZHQGkGydFvybxoB03oA2gIR0CgX0q64Ds/dX2UKGgGR0BmpCNKh+OPaAdN6ANoCEdAoGEWumrKeXV9lChoBkdAZOrIfbKzRmgHTegDaAhHQKBhJeqJdjZ1fZQoaAZHQGDtso2GZeBoB03oA2gIR0CgYW6PKdQPdX2UKGgGR0BnOQNNJvpAaAdN6ANoCEdAoGWX8wYcenV9lChoBkdAZ8MQiA2AG2gHTegDaAhHQKBml6LwWnF1fZQoaAZHQGWYtkFwDNhoB03oA2gIR0CgZ5ZW7voedX2UKGgGR0BlJ+2NNrTIaAdN6ANoCEdAoGgjc9GI9HV9lChoBkdAYTgYRdyDI2gHTegDaAhHQKBocx5cC5p1fZQoaAZHQGLHxsMy8BdoB03oA2gIR0Cgam23KB/adX2UKGgGR0BP0Hp0OmSAaAdLuGgIR0CgbRSckMTfdX2UKGgGR0Bfp7wOOKfnaAdN6ANoCEdAoG1154W1t3V9lChoBkdAZjARqXWvsGgHTegDaAhHQKBvsIbfgrJ1fZQoaAZHQGcVHfEXLvFoB03oA2gIR0CgcpNzCDVZdX2UKGgGR0BknvKji4rjaAdN6ANoCEdAoHgjG96C2HV9lChoBkdAY3V8rqdH2GgHTegDaAhHQKB46gvlEJB1fZQoaAZHQGYLRTCLuQZoB03oA2gIR0Cge+dxAB1cdX2UKGgGR0BkZawpvxYraAdN6ANoCEdAoHy/Kp1ifHV9lChoBkdAZPSlF+d9UmgHTegDaAhHQKB+m36Q/5d1fZQoaAZHQGfx5UT+NtJoB03oA2gIR0CgfrBGpda/dX2UKGgGR0BkSlVHWjGlaAdN6ANoCEdAoH8MLKFIu3V9lChoBkdAZpfghr30w2gHTegDaAhHQKCmplEqlP91fZQoaAZHQFId1K5CngpoB0u9aAhHQKCnCx9oexR1fZQoaAZHQGOjgZbY9PloB03oA2gIR0Cgp6En1FpgdX2UKGgGR0Bi2/Ls8gZCaAdN6ANoCEdAoKipzeXRgXV9lChoBkdAYi/ZsbedkWgHTegDaAhHQKCpivOhTOx1fZQoaAZHQGVqk9+w1SBoB03oA2gIR0Cgq78sDnvEdX2UKGgGR0BmykwDeTFEaAdN6ANoCEdAoK46qGUOeHV9lChoBkdAYo1RplBhQWgHTegDaAhHQKCumkAxSHd1fZQoaAZHQGNi4W1twaRoB03oA2gIR0CgsOxaouPFdX2UKGgGR0BQVrfUF0PpaAdLu2gIR0CgsPUpd8iOdX2UKGgGR0BmtuEh7mdRaAdN6ANoCEdAoLUPLgXMyXV9lChoBkdAZ1SsfaHsTmgHTegDaAhHQKC8NCUHIIZ1fZQoaAZHQGN/wxWT5ftoB03oA2gIR0CgvNPGACnxdX2UKGgGR0BfXznvDxb0aAdN6ANoCEdAoL8t9Dx9X3V9lChoBkdAYX16zmfXgGgHTegDaAhHQKC/1zGxUvR1fZQoaAZHQGUonYxtYSxoB03oA2gIR0CgwUbKzRhMdX2UKGgGR0BkKuOS4e90aAdN6ANoCEdAoMGfiNsFdXV9lChoBkdAYpiCDmKZUmgHTegDaAhHQKDF1amoBJZ1fZQoaAZHQGQzwF1SwW5oB03oA2gIR0CgxjtSQ5mzdX2UKGgGR0Bi2wQz1sciaAdN6ANoCEdAoMbVfReC1HV9lChoBkdAY2Yjt5UtI2gHTegDaAhHQKDHzvE0iyJ1fZQoaAZHQGV+H4fwI+poB03oA2gIR0CgyKQ1rIo3dX2UKGgGR0BlAqqZML4OaAdN6ANoCEdAoM1vHo5ggHV9lChoBkdAZs9SMLncL2gHTegDaAhHQKDNwZiNKiB1fZQoaAZHQGS4Jxm03OxoB03oA2gIR0Cgz9/F72L6dX2UKGgGR0BkwIFmnO0LaAdN6ANoCEdAoM/nRE4NqnV9lChoBkdAZH2xFAmiQGgHTegDaAhHQKDTlXr+o991fZQoaAZHQGHwXhOxjaxoB03oA2gIR0Cg2f12aDwpdX2UKGgGR0BgbrWf9P1taAdN6ANoCEdAoNrLutwJgXV9lChoBkdAYpn8kUsWf2gHTegDaAhHQKDdNxz7uUl1fZQoaAZHQGKTuvECNjtoB03oA2gIR0Cg3eM7dSEUdX2UKGgGR0Bg+og7o0Q9aAdN6ANoCEdAoN9FDv3JxXV9lChoBkdAY2VX7Lt/nWgHTegDaAhHQKDfmjesPrh1fZQoaAZHQGTldhAnlXBoB03oA2gIR0ChBxiVjZtfdX2UKGgGR0Beepftx+8XaAdN6ANoCEdAoQd9YOlO5HV9lChoBkdAanlJ/5LytmgHTegDaAhHQKEIDcophF51fZQoaAZHQGU1BcAzYVZoB03oA2gIR0ChCPCzcAR1dX2UKGgGR0Bk36fDk2gnaAdN6ANoCEdAoQm2jVQQ+XV9lChoBkdAYu9f/m1YyWgHTegDaAhHQKEOEiItUXJ1fZQoaAZHQFGOLw4KhL5oB0vUaAhHQKEORtrsSkF1fZQoaAZHQGAgIgFHJ91oB03oA2gIR0ChDoPyTY/WdX2UKGgGR0BMgeFtbcGkaAdLymgIR0ChDxyjgydndX2UKGgGR0BnjtvQ4S6EaAdN6ANoCEdAoRFE4T9KmXV9lChoBkdAZce4H5aePWgHTegDaAhHQKERTkKeCkJ1fZQoaAZHQGU9IPCl7+loB03oA2gIR0ChFMaC17Y1dX2UKGgGR0BQzLAk9lmOaAdLxGgIR0ChFWn9vS+hdX2UKGgGR0Bw5b9P1tfpaAdNBAFoCEdAoRlnNPgvUXV9lChoBkdAY40dlum78WgHTegDaAhHQKEZy+GoJiR1fZQoaAZHQGdf5xBE8aJoB03oA2gIR0ChGk4FaB7NdX2UKGgGR0BnGepQ1rIpaAdN6ANoCEdAoRwfHFPznXV9lChoBkdAaWTSWqtHQWgHTegDaAhHQKEcpgSeyzJ1fZQoaAZHQGbeFTWGyopoB03oA2gIR0ChHdE7GNrCdX2UKGgGR0BqUvcrRSgoaAdN6ANoCEdAoR4hYmsvI3V9lChoBkdAT5ouCf6Gg2gHS7xoCEdAoR5JLytmtnV9lChoBkdAaHJi83++/WgHTegDaAhHQKEhy02tMf11fZQoaAZHQGVDIl2NedFoB03oA2gIR0ChIjD5CWu6dX2UKGgGR0Bj+oyqMm4RaAdN6ANoCEdAoSK9NUOuq3V9lChoBkdASzD6tT1kD2gHS5loCEdAoSVbJ2dNFnV9lChoBkdATuK7ROUMX2gHS8doCEdAoSbQ1P3ztnV9lChoBkdAY2Vp/wy6+WgHTegDaAhHQKEoa912aDx1fZQoaAZHQGahpfpljExoB03oA2gIR0ChKJBky1u0dX2UKGgGR0Bk/LdadMCcaAdN6ANoCEdAoSi4AbQ1JnV9lChoBkdAY0tSn+AEuGgHTegDaAhHQKEqjkqc3ER1fZQoaAZHQGGMiOWBz3hoB03oA2gIR0ChLXni3ocJdX2UKGgGR0BllI6IWP92aAdN6ANoCEdAoS4TYChexHV9lChoBkdAYwyNutOmBWgHTegDaAhHQKEyf9CNS611fZQoaAZHQGHv5VXFLnNoB03oA2gIR0ChM8Cs4ku6dX2UKGgGR0Bpwf4h2W6caAdN6ANoCEdAoTZ7W5H3DnV9lChoBkdAYotnOB19v2gHTegDaAhHQKE3MinpB5Z1fZQoaAZHQGhzlpGnXNFoB03oA2gIR0ChOGp8WsRydX2UKGgGR0BnkGIqLCN0aAdN6ANoCEdAoTi97WuoxnV9lChoBkdAaV6qFyq+8GgHTegDaAhHQKE45stTUAl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}