weqweasdas commited on
Commit
a6ace1a
·
verified ·
1 Parent(s): 29e7938

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -175
README.md CHANGED
@@ -3,197 +3,66 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ This is a outcome-supervised reward (ORM) trained on Mistral-generated data from the project [RLHFlow/RLHF-Reward-Modeling](https://github.com/RLHFlow/RLHF-Reward-Modeling)
7
 
8
+ The model is trained from [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on [RLHFlow/Mistral-ORM-Data](https://huggingface.co/datasets/RLHFlow/Mistral-ORM-Data) for 1 epochs. We use a global batch size of 32 and a learning rate of 2e-6, where we pack the samples and split them into chunks of 8192 token. See more training details at https://github.com/RLHFlow/Online-RLHF/blob/main/math/llama-3.1-prm.yaml .
9
 
10
 
11
+ ## BoN evaluation result for Mistral generator:
12
 
13
+ | Model | Method | GSM8K | MATH |
14
+ | ------------- | ------------- | ------------- | -------- |
15
+ | Mistral-7B | Pass@1 | 77.9 | 28.4 |
16
+ | Mistral-7B | Majority Voting@1024 | 84.2 | 36.8 |
17
+ | Mistral-7B | Mistral-ORM@1024 | 90.1 | 43.6 |
18
+ | Mistral-7B | Mistral-PRM@1024 | 92.4 | 46.3 |
19
 
20
+ ## Scaling the inference sampling to N=1024 for Deepseek generator:
21
 
22
+ | Model | Method | GSM8K | MATH |
23
+ | ------------- | ------------- | ------------- | -------- |
24
+ | Deepseek-7B | Pass@1 | 83.9 | 38.4 |
25
+ | Deepseek-7B | Majority Voting@1024 | 89.7 | 57.4 |
26
+ | Deepseek-7B | Deepseek-ORM@1024 | 93.4 | 52.4 |
27
+ | Deepseek-7B | Deepseek-PRM@1024 | 93.0 | 58.1 |
28
+ | Deepseek-7B | Mistral-ORM@1024 (OOD) | 90.3 | 54.9 |
29
+ | Deepseek-7B | Mistral-PRM@1024 (OOD) | 91.9 | 56.9 |
30
 
31
+ ## Visualization
32
 
 
 
 
 
 
 
 
33
 
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/643e59806db6ba8c5ee123f3/i622m76fvKv8drLmwl8Q3.png)
35
 
36
+ ## Usage
37
 
38
+ See https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/main/math for detailed examples.
 
 
39
 
40
+ ## Citation
41
 
42
+ The automatic annotation was proposed in the Math-shepherd paper:
43
 
44
+ ```
45
+ @inproceedings{wang2024math,
46
+ title={Math-shepherd: Verify and reinforce llms step-by-step without human annotations},
47
+ author={Wang, Peiyi and Li, Lei and Shao, Zhihong and Xu, Runxin and Dai, Damai and Li, Yifei and Chen, Deli and Wu, Yu and Sui, Zhifang},
48
+ booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
49
+ pages={9426--9439},
50
+ year={2024}
51
+ }
52
 
53
+ ```
54
 
55
+ If you find the training recipe useful, please consider cite it as follows.
56
 
57
+ ```
58
+ @misc{xiong2024rlhflowmath,
59
+ author={Wei Xiong and Hanning Zhang and Nan Jiang and Tong Zhang},
60
+ title = {An Implementation of Generative PRM},
61
+ year = {2024},
62
+ publisher = {GitHub},
63
+ journal = {GitHub repository},
64
+ howpublished = {\url{https://github.com/RLHFlow/RLHF-Reward-Modeling}}
65
+ }
66
+ ```
67
 
 
68