Haoxiang-Wang commited on
Commit
a179a64
1 Parent(s): 9233c36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -155
README.md CHANGED
@@ -17,185 +17,82 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
201
 
 
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
+ - **Developed by:** Haoxiang Wang
21
+ - **Model type:** Sequence Classifier
22
+ - **Language(s) (NLP):** English
23
+ - **License:** Apache-2.0
24
+ - **Finetuned from model [optional]:** https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
 
 
25
 
26
  ### Model Sources [optional]
27
 
28
  <!-- Provide the basic links for the model. -->
29
 
30
+ - **Repository:** https://github.com/RLHFlow/directional-preference-alignment
31
+ - **Paper [optional]:** https://arxiv.org/abs/2402.18571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## How to Get Started with the Model
34
 
35
  Use the code below to get started with the model.
36
 
37
+ The model has 10-dimensional output, corresponding to the following attributes from HelpSteer and UltraFeedback
38
+ ['helpsteer-helpfulness', 'helpsteer-correctness', 'helpsteer-coherence', 'helpsteer-complexity', 'helpsteer-verbosity', 'ultrafeedback-overall_score', "ultrafeedback-instruction_following", "ultrafeedback-truthfulness", "ultrafeedback-honesty", "ultrafeedback-helpfulness"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ Here is a sample code that you can try
41
+ ```python
42
+ from transformers import AutoModelForSequenceClassification,AutoTokenizer
43
+ import torch
44
+ device = 'cuda'
45
+ path = "Haoxiang-Wang/RewardModel-Mistral-7B-for-DPA-v1"
46
+ rm = AutoModelForSequenceClassification.from_pretrained(path, trust_remote_code=True).to(device)
47
+ tokenizer = AutoTokenizer.from_pretrained(path)
48
 
49
+ input_template = "[INST] You must read the following conversation carefully and rate the assistant's response from score 0-100 in these aspects: helpfulness, correctness, coherence, honesty, complexity, verbosity\n\nUser: {prompt}\n\nAssistant: {response} [/INST]"
50
 
51
+ # Use a sample from HelpSteer validation set
52
+ prompt = 'What are some synonyms for the word "beautiful"?'
53
+ response = "Nicely, Beautifully, Handsome, Stunning, Wonderful, Gorgeous, Pretty, Stunning, Elegant"
54
 
55
+ model_inputs = tokenizer(input_template.format(prompt=prompt, response=response), return_tensors="pt").to(device)
56
+ with torch.no_grad():
57
+ score = rm(**model_inputs).logits.squeeze().cpu().float().numpy()
58
 
59
+ print(score)
60
+ # [68.99269 69.62718 76.23071 33.48785 35.853596 63.833366 55.58917 68.7175 59.552124 46.465595]
61
 
62
+ # Convert from our scale (0-100) to HelpSteer scale (0-4)
63
+ helpsteer_rewards_pred = (score[:5]-10)/20
64
+ print(helpsteer_rewards_pred)
65
+ # [2.9496346 2.981359 3.3115356 1.1743925 1.2926798]
66
+ # The actual rewards from the HelpSteer dataset for this sample are [3,3,4,2,2]
67
+ ```
68
+ ## Training
69
 
70
+ ![image/png](https://github.com/RLHFlow/directional-preference-alignment/raw/main/assets/preference-conflict.jpg)
71
 
72
+ ![image/png](https://github.com/RLHFlow/directional-preference-alignment/raw/main/assets/algo-illustration.jpg)
73
 
 
74
 
75
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  **BibTeX:**
78
+ If you find this work useful to your research, please consider citing our paper
79
+ ```
80
+ @article{wang2024arithmetic,
81
+ title={Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards},
82
+ author={Haoxiang Wang and Yong Lin and Wei Xiong and Rui Yang and Shizhe Diao and Shuang Qiu and Han Zhao and Tong Zhang},
83
+ year={2024},
84
+ eprint={2402.18571},
85
+ archivePrefix={arXiv},
86
+ primaryClass={cs.LG}
87
+ }
88
+ ```
89
+
90
+ ## Model Card Authors
91
+
92
+ Haoxiang Wang
 
 
 
 
 
93
 
94
  ## Model Card Contact
95
 
96
+ hwang264@illinois.edu
97
 
98