File size: 4,378 Bytes
8665456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b077005
8665456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b077005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8665456
b077005
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
language:
- en
tags:
- text-generation
- text2text-generation
pipeline_tag: text2text-generation
widget:
- text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ."
  example_title: "Example1"
- text: "Generate the question based on the answer: Arthur 's Magazine [X_SEP] Arthur 's Magazine ( 1844–1846 ) was an American literary periodical published in Philadelphia in the 19th century . First for Women is a woman 's magazine published by Bauer Media Group in the USA ."
  example_title: "Example2"
---

# MVP-question-generation
The MVP-question-generation model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.

The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP).

## Model Description
MVP-question-generation is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled question generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts.

MVP-question-generation is specially designed for question generation tasks, such as SQuAD and CoQA.

## Example
```python
>>> from transformers import MvpTokenizer, MvpForConditionalGeneration

>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-question-generation")

>>> inputs = tokenizer(
...     "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing .",
...     return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['A bolo punch and a hook are both punches used in what sport?']
```

## Related Models
**MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp).

**Prompt-based models**:

- MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task).
- MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization).
- MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog).
- MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text).
- MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story).
- MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering).
- MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation).
- MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog).

**Multi-task models**:
- MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization).
- MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog).
- MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text).
- MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story).
- MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering).
- MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation).
- MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog).

## Citation
```bibtex
@article{tang2022mvp,
  title={MVP: Multi-task Supervised Pre-training for Natural Language Generation},
  author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong},
  journal={arXiv preprint arXiv:2206.12131},
  year={2022},
  url={https://arxiv.org/abs/2206.12131},
}
```